Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T10:39:48.943Z Has data issue: false hasContentIssue false

Why a developmental cognitive neuroscience approach may be key for future-proofing microbiota-gut-brain research

Published online by Cambridge University Press:  15 July 2019

Nicola Johnstone
Affiliation:
Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom School of Psychology, University of Surrey, Guildford GU2 7XH, United Kingdom. n.johnstone@surrey.ac.ukk.cohenkadosh@surrey.ac.ukhttps://www.surrey.ac.uk/people/dr-nicola-johnstonekcohenkadosh.com
Kathrin Cohen Kadosh
Affiliation:
Department of Experimental Psychology, University of Oxford, Oxford OX1 3UD, United Kingdom School of Psychology, University of Surrey, Guildford GU2 7XH, United Kingdom. n.johnstone@surrey.ac.ukk.cohenkadosh@surrey.ac.ukhttps://www.surrey.ac.uk/people/dr-nicola-johnstonekcohenkadosh.com

Abstract

Here we argue that a multidisciplinary research approach, such as currently practised in the field of developmental cognitive neuroscience, is key to maintaining current momentum and to future-proof the field of microbiome-gut-brain research. Moreover, such a comprehensive approach will also bring us closer to our aims of translation and targeted intervention approaches to improve mental health and well-being.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cohen Kadosh, K. (2011) What can emerging cortical face networks tell us about mature brain organisation? Developmental Cognitive Neuroscience 1(3):246–55.Google Scholar
Cohen Kadosh, K. & Johnson, M.H. (2007) Developing a cortex specialized for face perception. Trends in Cognitive Sciences 11(9):367–69. Available at: https://doi.org/10.1016/j.tics.2007.06.007.Google Scholar
Cohen Kadosh, K., Linden, D. E. & Lau, J.Y. (2013) Plasticity during childhood and adolescence: Innovative approaches to investigating neurocognitive development. Developmental Science 16(4):574–83. Available at: https://doi.org/10.1111/desc.12054.Google Scholar
Cryan, J. F. & Dinan, T. G. (2012) Mind-altering microorganisms: The impact of the gut microbiota on brain and behaviour. Nature Reviews Neuroscience 13(10):701–12. Available at: https://doi.org/10.1038/nrn3346.Google Scholar
David, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V., Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J. & Turnbaugh, P. J. (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–63. Available at: https://doi.org/10.1038/nature12820.Google Scholar
Foster, J. A. & McVey Neufeld, K.-A. (2013) Gut-brain axis: How the microbiome influences anxiety and depression. Trends in Neurosciences 36(5):305–12. Available at: https://doi.org/10.1016/j.tins.2013.01.005.Google Scholar
Grenham, S., Clarke, G., Cryan, J. F. & Dinan, T. G. (2011) Brain-gut-microbe communication in health and disease. Frontiers in Physiology 2:94. Available at: https://doi.org/10.3389/fphys.2011.00094.Google Scholar
Grossman, M. I. (1979) Neural and hormonal regulation of gastrointestinal function: An overview. Annual Review of Physiology 41:2733. Available at: https://doi.org/10.1146/annurev.ph.41.030179.000331.Google Scholar
Johnson, M. H., Grossmann, T. & Cohen Kadosh, K. (2009) Mapping functional brain development: Building a social brain through interactive specialization. Developmental Psychology 45(1):151–59. Available at: https://doi.org/10.1037/a0014548.Google Scholar
Johnson, M. H., Halit, H., Grice, S. J. & Karmiloff-Smith, A. (2002) Neuroimaging of typical and atypical development: A perspective from multiple levels of analysis. Development and Psychopathology 14(3):521–36.Google Scholar
Keshavan, M. S., Giedd, J., Lau, J. Y., Lewis, D. A. & Paus, T. (2014) Changes in the adolescent brain and the pathophysiology of psychotic disorders. Lancet Psychiatry 1(7):549–58. Available at: https://doi.org/10.1016/S2215-0366(14)00081-9.Google Scholar
Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R. & Walters, E. E. (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry 62(6):593602. Available at: https://doi.org/10.1001/archpsyc.62.6.593.Google Scholar
Mayer, E. A. (2011) Gut feelings: The emerging biology of gut-brain communication. Nature Reviews Neuroscience 12(8):453–66. Available at: https://doi.org/10.1038/nrn3071.Google Scholar
Mayer, E. A., Knight, R., Mazmanian, S. K., Cryan, J. F. & Tillisch, K. (2014) Gut microbes and the brain: Paradigm shift in neuroscience. Journal of Neuroscience 34(46):15490–96. Available at: https://doi.org/10.1523/JNEUROSCI.3299-14.2014.Google Scholar
McVey Neufeld, K. A., Luczynski, P., Seira Oriach, C., Dinan, T. G. & Cryan, J.F. (2016) What's bugging your teen? The microbiota and adolescent mental health. Neuroscience & Biobehavioral Reviews 70:300312. Available at: https://doi.org/10.1016/j.neubiorev.2016.06.005.Google Scholar
Sarkar, A., Lehto, S. M., Harty, S., Dinan, T. G., Cryan, J. F. & Burnet, P. W. J. (2016) Psychobiotics and the manipulation of bacteria-gut-brain signals. Trends in Neurosciences 39(11):763–81. Available at: https://doi.org/10.1016/j.tins.2016.09.002.Google Scholar
Tang, F., Reddy, B. L. & Saier, M. H. Jr. (2014) Psychobiotics and their involvement in mental health. Journal of Molecular Microbiology and Biotechnology 24(4):211–14. Available at: https://doi.org/10.1159/000366281.Google Scholar