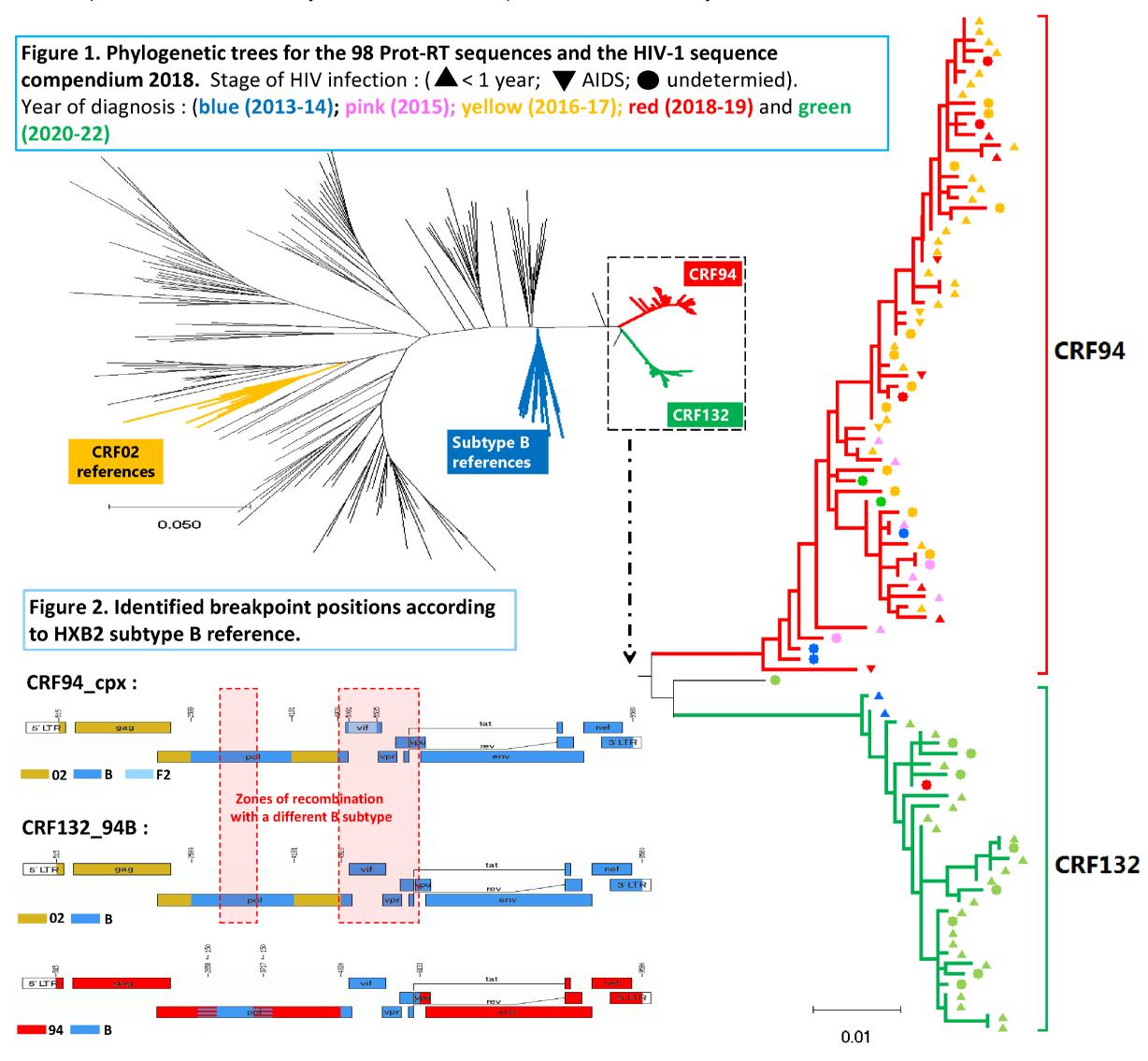
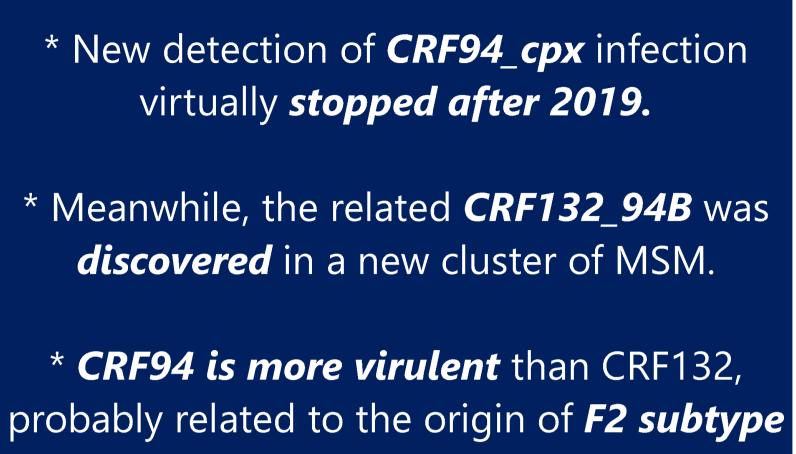


EPIDEMIOLOGICAL AND MOLECULAR EVOLUTION OF THE HIV-1 CRF94 : BIRTH OF CRF132


Marc Wirden¹, Fabienne De-Oliveira², Marie-Laure Chaix³, Stéphanie Marque-Juillet⁴, Sidonie Lambert-Niclot¹, Basma Abdi¹, Charlotte Charpentier³, Benedicte Roquebert⁵; Jean-Christophe Plantier², Diane Descamps³, Vincent Calvez¹, Anne-Genevieve Marcelin¹, Benoit Visseaux³, for the The Agence Nationale de Recherche sur le SIDA, les hépatites et maladies émergentes (ANRS-MIE group) ¹AP-HP, Sorbonne Université, INSERM, iPLESP, Paris, France ; ² CNR VIH, CHU C Nicolle, Rouen, France; ³AP-HP, Nord Université Paris Cité, Paris, France; ⁴CH de Versailles, Le Chesnay, France; ⁵Cerba, Saint Ouen L'Aumône, France;


BACKGROUND

In 2018, we reported the emergence of the new HIV-1 recombinant CRF94_02.B.F2 involved in a large transmission cluster of 49 French MSM mostly infected in 2016-2017. This CRF94 strain raised concerns about enhanced virulence. This study reports the molecular and epidemiological evolution of this CRF94 until June 2022.

METHODS

- In 2021-2022, the sequence databases of the laboratories of the French ANRS MIE network were screened for patients diagnosed with an HIV-1 CRF94 virus or a similar *pol* gene recombination pattern.
- Subtypes of the collected strains were confirmed by phylogenetic analysis of their sequences coding for the protease/reverse transcriptase (1070bps) and the integrase gene (696bps), with the 2018 compendium dataset of the Los Alamos National Laboratory (LANL). Phylogenetic trees were constructed using IQ-Tree with a GTR-G nucleotide substitution model and ultra fast boostrap (Fig. 1).
- The DeepChek[®] assay Whole Genome kit and the DeepChek[®] analysis sofware were used to obtain five complete genomes from 5 strains classified as "close" but distinct from the CRF94 cluster. Recombination breakpoints of these five sequences were estimated using SimPlot and RDP5.
- The statistical analyses of biological parameters were performed with Mann-Whitney and LogRank tests.
- A Kaplan Meier survival analysis was used to compare the viremia decay after the treatment initiation.

of the **vif gene**.

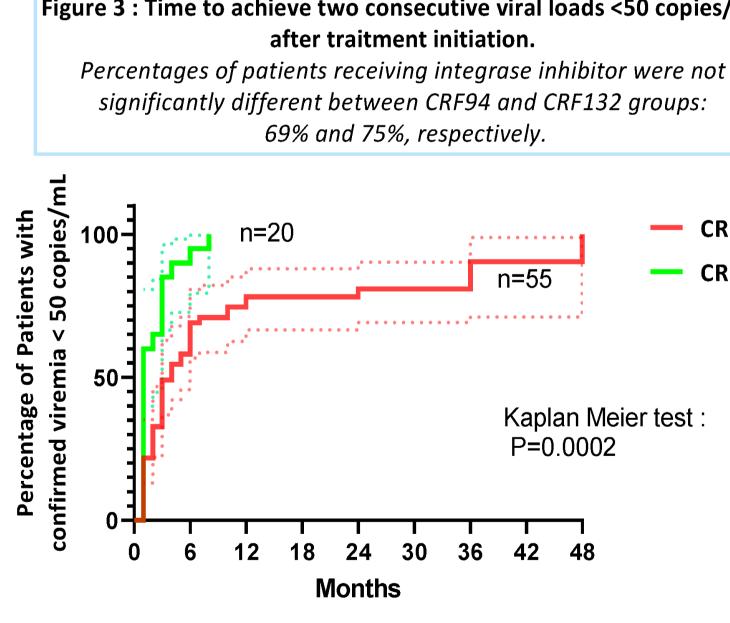

Table 1 . Epidemiological data at the time of diagnosis (percentage or median value (IQR))				
	CRF94 (n=63)	CRF132 (n=32)		
Male	98%	100%		
MSM	95%	97%		
Median age (years)	34 (28-43)	30 (25-33)	P=0,0183	
Year of diagnosis	97% in 2013-2019	90% in 2020-2022		
Infection date <1 year	57 %	77 %	P=0,1425	
AIDS stage	10 %	0%		

Table 2 . Biological data at the time of diagnosis (median value (IQR))				
	CRF94	CRF132		
Viral Load (log ₁₀ copies/mL)				
All HIV infection stages	5,42 (4,88-5,98) n=61	4,42 (3,78-5,33) n=31	P=0,0006	
Acute infections excluded	5,22 (4,81-5,74) n=37	4,49 (3,92-5,15) n=16	P=0,0100	
CD4 count (per mm ³)				
All HIV infection stages	358 (199-550) n=61	508 (414-686) n=31	P=0,0017	
Acute infections excluded	258 (159-408) n=37	482 (377-716) n=16	P=0,0015	
Acute infections excluded	258 (159-408) n=37	482 (377-716) n=16	P=0,001	

RESULTS

- the previous study, before 2018.

- CRF94 was detected.
- 95% of patients in the CRF132 cluster were aware of PrEP.
- with the CRF132 (Fig.3) (p=0.0002).

CONCLUSIONS

- New infection with CRF94 strain were no longer detected after 2019. It's possibly due to: i) the planned targeted prevention actions carried out in the cluster area, ii) the expansion of PrEP, or iii) to the COVID epidemic with a drastic drop in the tourist activity of the company around which the cluster had developed.
- However, during the same period, a new related recombinant CRF132_94B was discovered in another area of the Paris region.
- The biological parameters suggest a lower virulence of CRF132, possibly due to the change of the vif gene which has changed from the F2 (CRF94) to the B subtype (CRF132).
- This molecular change of the vif gene between CRF94 and CRF132 reinforces previous observations reporting a greater virulence of the HIV-1 subtype F, (Pernas.B et al. AIDS, 2014; Cid-Silva. P et al. AIDS, 2018), with especially a higher efficacy of Vif against APOBEC3 (Binka. et al. M, J.Virol, 2012).
- Contrary to the CRF94, we could not identify a particular population or transmission place, that could allow specific prevention measures for CRF132.

49 new HIV-1 sequences were collected and added to the 49 identified in

Phylogenetic analyzes of these 98 strains showed that 63 clustered within the CRF94 branch, and 32 were included in a new distinct cluster. The last 3 strains were not included in any of those two large clusters (Fig. 1)

The analysis of 5 complete genomes, (GenBank accession numbers: ON901787-88-89-90-91) selected from the new cluster, revealed a new recombinant form : the CRF132_94B. It presents the same CRF94 pattern with two new subtype B inclusions in the *pol* gene and in accessory genes. As a result, the *vif* gene changed from F2 to B subtype.

Except 3 sequences, the cluster CRF132 appeared after 2019 while only 2

• The comparison of epidemiological and biological parameters between the CRF94 and 132 clusters are resumed in tables 1 and 2. The patients infected with CRF94 had significantly higher viral load (delta of 1 log copies/mL) and lower CD4 count at the time of diagnosis. In addition,

Finally, on treatment , patients infected with the CRF94 achieved a confirmed viremia <50 copies/mL significantly later than those infected

Figure 3 : Time to achieve two consecutive viral loads <50 copies/mL

Kaplan Meier test : P=0.0002