Control of Electron-State Coupling in Asymmetric Ge/SiGe Quantum Wells

C. Ciano, M. Virgilio, M. Montanari, L. Persichetti, L. Di Gaspare, M. Ortolani, L. Baldassarre, M.H. Zoellner, O. Skibitzki, G. Scalari, J. Faist, D.J. Paul, M. Scuderi, G. Nicotra, T. Grange, S. Birner, G. Capellini, and M. De Seta
Phys. Rev. Applied 11, 014003 – Published 2 January 2019

Abstract

Theoretical predictions indicate that the n-type Ge/SiGe multi-quantum-well system is the most promising material for the realization of a Si-compatible THz quantum cascade laser operating at room temperature. To advance in this direction, we study, both experimentally and theoretically, asymmetric coupled multi-quantum-well samples based on this material system, that can be considered as the basic building block of a cascade architecture. Extensive structural characterization shows the high material quality of strain-symmetrized structures grown by chemical vapor deposition, down to the ultrathin barrier limit. Moreover, THz absorption spectroscopy measurements supported by theoretical modeling unambiguously demonstrate inter-well coupling and wavefunction tunneling. The agreement between experimental data and simulations allows us to characterize the tunneling barrier parameters and, in turn, achieve highly controlled engineering of the electronic structure in forthcoming unipolar cascade systems based on n-type Ge/SiGe multi-quantum-wells.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 24 September 2018
  • Revised 2 December 2018

DOI:https://doi.org/10.1103/PhysRevApplied.11.014003

© 2019 American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied Physics

Authors & Affiliations

C. Ciano1, M. Virgilio2,*, M. Montanari1, L. Persichetti1, L. Di Gaspare1, M. Ortolani3, L. Baldassarre3, M.H. Zoellner4, O. Skibitzki4, G. Scalari5, J. Faist5, D.J. Paul6, M. Scuderi7, G. Nicotra7, T. Grange8, S. Birner8, G. Capellini1,4, and M. De Seta1

  • 1Dipartimento di Scienze, Università Roma Tre, V.le G. Marconi 446, I-00146 Rome, Italy
  • 2Dipartimento di Fisica “E. Fermi, “Università di Pisa, Largo Pontecorvo 3, I-56127 Pisa, Italy
  • 3Dipartimento di Fisica, Università di Roma “La Sapienza”, Piazzale A. Moro 2, I-00185 Rome, Italy
  • 4IHP – Leibniz-Institut für innovative Mikroelektronik, Im Technologiepark 25, D-15236 Frankfurt (Oder), Germany
  • 5Institute for Quantum Electronics, ETH Zürich, Zürich, Switzerland
  • 6School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, United Kingdom
  • 7Istituto per la Microelettronica e Microsistemi (CNR-IMM), VIII strada 5, I-95121 Catania, Italy
  • 8nextnano GmbH, Südmährenstr. 21, D-85586 Poing, Germany

  • *michele.virgilio@unipi.it

Article Text (Subscription Required)

Click to Expand

References (Subscription Required)

Click to Expand
Issue

Vol. 11, Iss. 1 — January 2019

Subject Areas
Reuse & Permissions
Access Options
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Applied

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×