Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Anthropogenic impacts on lowland tropical peatland biogeochemistry

Abstract

Tropical peatlands store around one-sixth of the global peatland carbon pool (105 gigatonnes), equivalent to 30% of the carbon held in rainforest vegetation. Deforestation, drainage, fire and conversion to agricultural land threaten these ecosystems and their role in carbon sequestration. In this Review, we discuss the biogeochemistry of tropical peatlands and the impacts of ongoing anthropogenic modifications. Extensive peatlands are found in Southeast Asia, the Congo Basin and Amazonia, but their total global area remains unknown owing to inadequate data. Anthropogenic transformations result in high carbon loss and reduced carbon storage, increased greenhouse gas emissions, loss of hydrological integrity and peat subsidence accompanied by an enhanced risk of flooding. Moreover, the resulting nutrient storage and cycling changes necessitate fertilizer inputs to sustain crop production, further disturbing the ecosystem and increasing greenhouse gas emissions. Under a warming climate, these impacts are likely to intensify, with both disturbed and intact peat swamps at risk of losing 20% of current carbon stocks by 2100. Improved measurement and observation of carbon pools and fluxes, along with process-based biogeochemical knowledge, is needed to support management strategies, protect tropical peatland carbon stocks and mitigate greenhouse gas emissions.

Key points

  • Tropical peatlands are important in terms of the global carbon cycle and in efforts to combat climate change, with a growing recognition of their potential role in natural climate solutions.

  • Tropical peatlands occupy approximately 440,000 km2 across Southeast Asia, Central Africa and South and Central America, and are mostly forested. They are among the world’s most carbon-dense ecosystems with a belowground carbon stock of about 105 gigatonnes (Gt).

  • Although tropical peatlands in Africa and in South and Central America remain largely intact, those in Southeast Asia have undergone widespread transformations owing to deforestation, drainage and agricultural conversion.

  • Land-use changes result in rapid peat carbon loss, high greenhouse gas emissions, land subsidence, changes in hydrology and nutrient cycling, and an increased risk of fire.

  • Management priorities include protection of the carbon sink function of intact forested peatlands; restoration of degraded, forested peatlands; and improved management of agricultural peatlands by raising water levels to mitigate carbon losses and greenhouse gas emissions.

  • The response of tropical peatlands and their carbon stocks to anthropogenic warming and associated changes in hydroclimate remain an area of uncertainty.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Global distribution of tropical peatlands.
Fig. 2: Biogeochemical cycling in tropical peatlands.
Fig. 3: Environmental and biogeochemical impacts of fires on tropical peatlands.
Fig. 4: Trade-offs between WTD, greenhouse gas emissions and nutrient supply for tropical peatlands.

Similar content being viewed by others

References

  1. Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017). This study describes the large extent and huge carbon stocks of the Congo Basin peatlands.

    Google Scholar 

  2. Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 17, 798–818 (2011). This is a comprehensive assessment of the extent, volume and carbon stocks of peatlands across the tropics, highlighting their importance in the global carbon cycle and key uncertainties.

    Google Scholar 

  3. Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).

    Google Scholar 

  4. Gumbricht, T. et al. An expert system model for mapping tropical wetlands and peatlands reveals South America as the largest contributor. Glob. Change Biol. 23, 3581–3599 (2017).

    Google Scholar 

  5. Olsson, L. et al. Climate change and land (eds Shukla, P. R. et al.) 345–436 (IPCC, 2019).

  6. Leifeld, J. & Menichetti, L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun. 9, 1071 (2018).

    Google Scholar 

  7. Smith, P. et al. Climate change 2014: mitigation of climate change. Contribution of Working Group III to the fifth assessment report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) 811–922 (Cambridge Univ. Press, 2014).

  8. Goldstein, A. et al. Protecting irrecoverable carbon in Earth’s ecosystems. Nat. Clim. Chang. 10, 287–295 (2020). This study evaluates ecosystems on the basis of the size of carbon stocks that are vulnerable to release upon land-use conversion and not recoverable on timescales relevant to avoiding dangerous climate impacts; it emphasizes the high density of irrecoverable carbon in tropical peatlands.

    Google Scholar 

  9. Griscom, B. W. et al. Natural climate solutions. Proc. Natl. Acad. Sci. USA 114, 11645–11650 (2017).

    Google Scholar 

  10. Leifeld, J., Wüst-Galley, C. & Page, S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Chang. 9, 945–947 (2019).

    Google Scholar 

  11. Intergovernmental Panel on Climate Change. Climate change and land (IPCC, 2019).

  12. Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).

    Google Scholar 

  13. Page, S., Wüst, R. & Banks, C. Past and present carbon accumulation and loss in Southeast Asian peatlands. PAGES News 18, 25–27 (2010).

    Google Scholar 

  14. Page, S. E. et al. A record of Late Pleistocene and Holocene carbon accumulation and climate change from an equatorial peat bog (Kalimantan, Indonesia): implications for past, present and future carbon dynamics. J. Quat. Sci. 19, 625–635 (2004).

    Google Scholar 

  15. Dommain, R., Couwenberg, J. & Joosten, H. Development and carbon sequestration of tropical peat domes in south-east Asia: links to post-glacial sea-level changes and Holocene climate variability. Quat. Sci. Rev. 30, 999–1010 (2011). This is a comprehensive assessment of peatland development in Southeast Asia, exploring regional differences in rates of peat formation and carbon accumulation.

    Google Scholar 

  16. Ruwaimana, M., Anshari, G. Z., Silva, L. C. R. & Gavin, D. G. The oldest extant tropical peatland in the world: a major carbon reservoir for at least 47,000 years. Environ. Res. Lett. 15, 114027 (2020). This study compares the development of coastal and inland peatlands in West Kalimantan, Indonesia, and provides a description of the oldest known peat deposit in Southeast Asia.

    Google Scholar 

  17. Anshari, G., Kershaw, A. P., Kaars, S. V. D. & Jacobsen, G. Environmental change and peatland forest dynamics in the Lake Sentarum area, West Kalimantan, Indonesia. J. Quat. Sci. 19, 637–655 (2004).

    Google Scholar 

  18. Dommain, R., Couwenberg, J. & Joosten, H. Hydrological self-regulation of domed peatlands in south-east Asia and consequences for conservation and restoration Mires Peat 6, 1–17 2010).

    Google Scholar 

  19. Jones, M. B. & Muthuri, F. M. Standing biomass and carbon distribution in a papyrus (Cyperus papyrus L.) swamp on Lake Naivasha, Kenya. J. Trop. Ecol. 13, 347–356 (1997).

    Google Scholar 

  20. Saunders, M. J., Jones, M. B. & Kansiime, F. Carbon and water cycles in tropical papyrus wetlands. Wetl. Ecol. Manag. 15, 489–498 (2007).

    Google Scholar 

  21. Burrough, S. L., Thomas, D. S. G., Orijemie, E. A. & Willis, K. J. Landscape sensitivity and ecological change in western Zambia: the long-term perspective from dambo cut-and-fill sediments. J. Quat. Sci. 30, 44–58 (2015).

    Google Scholar 

  22. Davenport, I. J. et al. First evidence of peat domes in the Congo Basin using LiDAR from a fixed-wing drone. Remote Sens. 12, 2196 (2020).

    Google Scholar 

  23. Alsdorf, D. et al. Opportunities for hydrologic research in the Congo Basin. Rev. Geophys. 54, 378–409 (2016).

    Google Scholar 

  24. Biddulph, G. E. et al. Current knowledge on the Cuvette Centrale peatland complex and future research directions. Bois For. Trop. 350, 3–14 (2021).

    Google Scholar 

  25. Lähteenoja, O. et al. The large Amazonian peatland carbon sink in the subsiding Pastaza–Marañón foreland basin, Peru. Glob. Change Biol. 18, 164–178 (2012).

    Google Scholar 

  26. Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 129–141 (2017).

    Google Scholar 

  27. Draper, F. C. et al. The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ. Res. Lett. 9, 124017 (2014). Using a combination of remote sensing and field data, this study provides an assessment of the distribution of above- and belowground peatland carbon stocks in the Pastaza–Marañon foreland basin in Peruvian Amazonia.

    Google Scholar 

  28. Phillips, S., Rouse, G. E. & Bustin, R. M. Vegetation zones and diagnostic pollen profiles of a coastal peat swamp, Bocas del Toro, Panamá. Palaeogeogr. Palaeoclimatol. Palaeoecol. 128, 301–338 (1997).

    Google Scholar 

  29. Sjögersten, S. et al. Coastal wetland ecosystems deliver large carbon stocks in tropical Mexico. Geoderma 403, 115173 (2021).

    Google Scholar 

  30. Joosten, H. in Tropical Peatland Ecosystems (eds Osaki, M. & Tsuji, N.) 33–48 (Springer, 2016).

  31. Anderson, J. A. R. in Mires: Swamp, Bog, Fen and Moor: Regional Studies (ed. Gore, A. J. P.) 191–199 (Elsevier, 1983).

  32. Draper, F. C. et al. Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional beta-diversity. Ecography 41, 1256–1269 (2018).

    Google Scholar 

  33. Anderson, J. A. R. Ecology and Forest Types of The Peat Swamp Forests of Sarawak and Brunei in Relation to their Silviculture. Thesis, Univ. Edinburgh (1961).

  34. Freund, C. A., Harsanto, F. A., Purwanto, A., Takahashi, H. & Harrison, M. E. Microtopographic specialization and flexibility in tropical peat swamp forest tree species. Biotropica 50, 208–214 (2018).

    Google Scholar 

  35. Lampela, M. et al. Ground surface microtopography and vegetation patterns in a tropical peat swamp forest. CATENA 139, 127–136 (2016).

    Google Scholar 

  36. Miyamoto, K. et al. Habitat differentiation among tree species with small-scale variation of humus depth and topography in a tropical heath forest of Central Kalimantan, Indonesia. J. Trop. Ecol. 19, 43–54 (2003).

    Google Scholar 

  37. Miettinen, J., Shi, C. & Liew, S. C. Land cover distribution in the peatlands of peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 6, 67–78 (2016).

    Google Scholar 

  38. Wijedasa, L. S. et al. Carbon emissions from South-East Asian peatlands will increase despite emission-reduction schemes. Glob. Change Biol. 24, 4598–4613 (2018).

    Google Scholar 

  39. Page, S. E. & Hooijer, A. In the line of fire: the peatlands of Southeast Asia. Phil. Trans. R. Soc. B 371, 20150176.(2016).

    Google Scholar 

  40. Hergoualc’h, K., Gutiérrez-Vélez, V. H., Menton, M. & Verchot, L. V. Characterizing degradation of palm swamp peatlands from space and on the ground: an exploratory study in the Peruvian Amazon. For. Ecol. Manag. 393, 63–73 (2017).

    Google Scholar 

  41. Horn, C. M., Vargas Paredes, V. H., Gilmore, M. P. & Endress, B. A. Spatio-temporal patterns of Mauritia flexuosa fruit extraction in the Peruvian Amazon: implications for conservation and sustainability. Appl. Geogr. 97, 98–108 (2018).

    Google Scholar 

  42. Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Change 24, 669–686 (2019).

    Google Scholar 

  43. Grundling, P.-L. & Grootjans, A. P. in The Wetland Book. II: Distribution, Description, and Conservation (eds Finlayson, M., Milton, G., Prentice, R. & Davidson, N.) (Springer, 2018).

  44. Roucoux, K. H. et al. Threats to intact tropical peatlands and opportunities for their conservation. Conserv. Biol. 31, 1283–1292 (2017).

    Google Scholar 

  45. Baird, A. J. et al. High permeability explains the vulnerability of the carbon store in drained tropical peatlands. Geophys. Res. Lett. 44, 1333–1339 (2017). This study finds that the permeability of ombrotrophic tropical peat is higher than expected, resulting in deep water tables in ditched tropical peatlands and associated high rates of peat oxidation.

    Google Scholar 

  46. Kelly, T. J. et al. The high hydraulic conductivity of three wooded tropical peat swamps in northeast Peru: measurements and implications for hydrological function. Hydrol. Process. 28, 3373–3387 (2014).

    Google Scholar 

  47. Tonks, A. J. et al. Impacts of conversion of tropical peat swamp forest to oil palm plantation on peat organic chemistry, physical properties and carbon stocks. Geoderma 289, 36–45 (2017).

    Google Scholar 

  48. Mezbahuddin, M., Grant, R. F. & Hirano, T. How hydrology determines seasonal and interannual variations in water table depth, surface energy exchange, and water stress in a tropical peatland: modeling versus measurements. J. Geophys. Res. Biogeosci. 120, 2132–2157 (2015).

    Google Scholar 

  49. Laurén, A. et al. Nutrient balance as a tool for maintaining yield and mitigating environmental impacts of Acacia plantation in drained tropical peatland — description of plantation simulator. Forests 12, 312 (2021).

    Google Scholar 

  50. Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).

    Google Scholar 

  51. Anshari, G. Z., Gusmayanti, E. & Novita, N. The use of subsidence to estimate carbon loss from deforested and drained tropical peatlands in Indonesia. Forests 12, 732 (2021).

    Google Scholar 

  52. Evans, C. D. et al. A novel low-cost, high-resolution camera system for measuring peat subsidence and water table dynamics. Front. Environ. Sci. 9, 33 (2021).

    Google Scholar 

  53. Evans, C. D. et al. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra, Indonesia. Geoderma 338, 410–421 (2019).

    Google Scholar 

  54. Hoyt, A. M., Chaussard, E., Seppalainen, S. S. & Harvey, C. F. Widespread subsidence and carbon emissions across Southeast Asian peatlands. Nat. Geosci. 13, 435–440 (2020). Using remote sensing, this study quantifies the rate of peat subsidence and carbon loss across peatlands in Southeast Asia.

    Google Scholar 

  55. Cobb, A. R., Dommain, R., Tan, F., Heng, N. H. E. & Harvey, C. F. Carbon storage capacity of tropical peatlands in natural and artificial drainage networks. Environ. Res. Lett. 15, 114009 (2020).

    Google Scholar 

  56. Ritzema, H., Limin, S., Kusin, K., Jauhiainen, J. & Wösten, H. Canal blocking strategies for hydrological restoration of degraded tropical peatlands in central Kalimantan, Indonesia. CATENA 114, 11–20 (2014).

    Google Scholar 

  57. Hooijer, A., Vernimmen, R., Visser, M. & Mawdsley, N. Flooding projections from elevation and subsidence models for oil palm plantations in the Rajang Delta peatlands, Sarawak, Malaysia (Deltares, 2015).

  58. Sumarga, E., Hein, L., Hooijer, A. & Vernimmen, R. Hydrological and economic effects of oil palm cultivation in Indonesian peatlands. Ecol. Soc. 21, 52 (2016).

    Google Scholar 

  59. Evers, S., Yule, C. M., Padfield, R., O’Reilly, P. & Varkkey, H. Keep wetlands wet: the myth of sustainable development of tropical peatlands — implications for policies and management. Glob. Change Biol. 23, 534–549 (2017). This study reviews the ecosystem services provided by Southeast Asian peatlands and discusses key policy challenges for peatland management.

    Google Scholar 

  60. Tan, Z. D., Lupascu, M. & Wijedasa, L. S. Paludiculture as a sustainable land use alternative for tropical peatlands: a review. Sci. Total Environ. 753, 142111 (2021). This study evaluates the current understanding of and opportunities for paludiculture in the context of tropical peatlands, emphasizing that tropical paludiculture will be heavily influenced by socioeconomic considerations.

    Google Scholar 

  61. Haraguchi, A. in Tropical Peatland Ecosystems (Osaki, M. & Tsuji, N.) 297–311 (Springer, 2016).

  62. Wösten, J. H. M., Ismail, A. B. & van Wijk, A. L. M. Peat subsidence and its practical implications: a case study in Malaysia. Geoderma 78, 25–36 (1997).

    Google Scholar 

  63. Grealish, G. J. & Fitzpatrick, R. W. Acid sulphate soil characterization in Negara Brunei Darussalam: a case study to inform management decisions. Soil. Use Manag. 29, 432–444 (2013).

    Google Scholar 

  64. Klepper, O., Chairuddin, G. T., Iriansyah & Rijksen, H. D. Water quality and the distribution of some fishes in an area of acid sulphate soils, Kalimantan, Indonesia. Hydrobiol. Bull. 25, 217–224 (1992).

    Google Scholar 

  65. Shamshuddin, J. & Muhrizal, S. Chemical pollution in acid sulfate soils. Proc. Geol. Soc. Malaysia Annu. Geol.Conf. 2000, 231–234 (2000).

    Google Scholar 

  66. Suwardi. Utilization and improvement of marginal soils for agricultural development in Indonesia. IOP Conf. Ser. Earth Environ. Sci. 383, 012047 (2019).

    Google Scholar 

  67. Hirano, T., Jauhiainen, J., Inoue, T. & Takahashi, H. Controls on the carbon balance of tropical peatlands. Ecosystems 12, 873–887 (2009).

    Google Scholar 

  68. Stumm, W. & Morgan, J. J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters (Wiley, 1996).

  69. Billett, M. F., Garnett, M. H. & Dinsmore, K. J. Should aquatic CO evasion be included in contemporary carbon budgets for peatland ecosystems? Ecosystems 18, 471–480 (2015).

    Google Scholar 

  70. Chimner, R. A. & Ewel, K. C. A tropical freshwater wetland: II. Production, decomposition, and peat formation. Wetl. Ecol. Manag. 13, 671–684 (2005).

    Google Scholar 

  71. Hoyos-Santillan, J. et al. Getting to the root of the problem: litter decomposition and peat formation in lowland neotropical peatlands. Biogeochemistry 126, 115–129 (2015).

    Google Scholar 

  72. Könönen, M. et al. Land use increases the recalcitrance of tropical peat. Wetl. Ecol. Manag. 24, 717–731 (2016).

    Google Scholar 

  73. Sangok, F. E., Maie, N., Melling, L. & Watanabe, A. Evaluation on the decomposability of tropical forest peat soils after conversion to an oil palm plantation. Sci. Total Environ. 587–588, 381–388 (2017).

    Google Scholar 

  74. Yule, C. M., Lim, Y. Y. & Lim, T. Y. Degradation of tropical Malaysian peatlands decreases levels of phenolics in soil and in leaves of Macaranga pruinosa. Front. Earth Sci. 4, 1–9 (2016).

    Google Scholar 

  75. Yu, Z. et al. Peatlands and their role in the global carbon cycle. Eos 92, 97–98 (2011).

    Google Scholar 

  76. Lähteenoja, O., Ruokolainen, K., Schulman, L. & Oinonen, M. Amazonian peatlands: an ignored C sink and potential source. Glob. Change Biol. 15, 2311–2320 (2009).

    Google Scholar 

  77. Garneau, M. et al. Holocene carbon dynamics of boreal and subarctic peatlands from Québec, Canada. Holocene 24, 1043–1053 (2014).

    Google Scholar 

  78. Gorham, E. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecol. Appl. 1, 182–195 (1991).

    Google Scholar 

  79. Turunen, J., Roulet, N. T., Moore, T. R. & Richard, P. J. H. Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Glob. Biogeochem. Cycles 18, GB3002 (2004).

    Google Scholar 

  80. Yu, Z. C. Northern peatland carbon stocks and dynamics: a review. Biogeosciences 9, 4071–4085 (2012).

    Google Scholar 

  81. Poulter, B. et al. in Wetland Carbon And Environmental Management (eds Krauss, K. W., Zhu, Z. & Stagg, C. L.) 1–20 (American Geophysical Union, 2021).

  82. Honorio Coronado, E. et al. Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests. Environ. Res. Lett. 16, 074048 (2021).

    Google Scholar 

  83. Sjögersten, S. et al. Tropical wetlands: a missing link in the global carbon cycle? Carbon cycling in tropical wetlands. Glob. Biogeochem. Cycles 28, 1371–1386 (2014).

    Google Scholar 

  84. Griffis, T. J. et al. Hydrometeorological sensitivities of net ecosystem carbon dioxide and methane exchange of an Amazonian palm swamp peatland. Agric. For. Meteorol. 295, 108167 (2020).

    Google Scholar 

  85. Kiew, F. et al. CO2 balance of a secondary tropical peat swamp forest in Sarawak, Malaysia. Agric. For. Meteorol. 248, 494–501 (2018).

    Google Scholar 

  86. Hirano, T. et al. Effects of disturbances on the carbon balance of tropical peat swamp forests. Glob. Change Biol. 18, 3410–3422 (2012).

    Google Scholar 

  87. Tang, A. C. I. et al. A Bornean peat swamp forest is a net source of carbon dioxide to the atmosphere. Glob. Change Biol. 26, 6931–6944 (2020).

    Google Scholar 

  88. Deshmukh, C. S. et al. Conservation slows down emission increase from a tropical peatland in Indonesia. Nat. Geosci. 14, 484–490 (2021). This study presented measurements of CO2 and CH4 fluxes obtained using the eddy covariance method from both intact and degraded peat swamp forest in Sumatra, Indonesia, during the 2019 ENSO drought.

    Google Scholar 

  89. Kiew, F. et al. Carbon dioxide balance of an oil palm plantation established on tropical peat. Agric. For. Meteorol. 295, 108189 (2020).

    Google Scholar 

  90. McCalmont, J. et al. Short- and long-term carbon emissions from oil palm plantations converted from logged tropical peat swamp forest. Glob. Change Biol. 27, 2361–2376 (2021).

    Google Scholar 

  91. Germer, J. & Sauerborn, J. Estimation of the impact of oil palm plantation establishment on greenhouse gas balance. Environ. Dev. Sustain. 10, 697–716 (2008).

    Google Scholar 

  92. Lewis, K. et al. An assessment of oil palm plantation aboveground biomass stocks on tropical peat using destructive and non-destructive methods. Sci. Rep. 10, 2230 (2020).

    Google Scholar 

  93. Wijedasa, L. S. Peat Swamp Forest Conservation in Southeast Asia. Thesis, National Univ. Singapore (2019).

  94. Moore, S. et al. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493, 660–663 (2013).

    Google Scholar 

  95. Cook, S. et al. Fluvial organic carbon fluxes from oil palm plantations on tropical peatland. Biogeosciences 15, 7435–7450 (2018).

    Google Scholar 

  96. Waldron, S. et al. C mobilisation in disturbed tropical peat swamps: old DOC can fuel the fluvial efflux of old carbon dioxide, but site recovery can occur. Sci. Rep. 9, 11429 (2019).

    Google Scholar 

  97. Brady, M. A. Organic Matter Dynamics of Coastal Peat Deposits in Sumatra, Indonesia. Thesis, Univ. British Columbia (1997).

  98. Jauhiainen, J., Limin, S., Silvennoinen, H. & Vasander, H. Carbon dioxide and methane fluxes in drained tropical peat before and after hhydrological restoration. Ecology 89, 3503–3514 (2008).

    Google Scholar 

  99. Jauhiainen, J., Takahashi, H., Heikkinen, J. E. P., Martikainen, P. J. & Vasander, H. Carbon fluxes from a tropical peat swamp forest floor. Glob. Change Biol. 11, 1788–1797 (2005).

    Google Scholar 

  100. Yule, C. M. & Gomez, L. N. Leaf litter decomposition in a tropical peat swamp forest in peninsular Malaysia. Wetl. Ecol. Manag. 17, 231–241 (2009).

    Google Scholar 

  101. Swails, E., Hertanti, D., Hergoualc’h, K., Verchot, L. & Lawrence, D. The response of soil respiration to climatic drivers in undrained forest and drained oil palm plantations in an Indonesian peatland. Biogeochemistry 142, 37–51 (2019).

    Google Scholar 

  102. Ishikura, K. et al. Carbon dioxide and methane emissions from peat soil in an undrained tropical peat swamp forest. Ecosystems 22, 1852–1868 (2019).

    Google Scholar 

  103. Melling, L., Tan, C. Y., Goh, K. J. & Hatano, R. Soil microbial and root respirations from three ecosystems in tropical peatland of Sarawak, Malaysia. J. Oil Palm. Res. 25, 44–57 (2013).

    Google Scholar 

  104. Cooper, H. V. et al. Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation. Nat. Commun. 11, 407 (2020).

    Google Scholar 

  105. Girkin, N. T., Turner, B. L., Ostle, N. & Sjögersten, S. Root-derived CO2 flux from a tropical peatland. Wetl. Ecol. Manag. 26, 985–991 (2018).

    Google Scholar 

  106. Dhandapani, S., Ritz, K., Evers, S., Yule, C. M. & Sjögersten, S. Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in peninsular Malaysia. Sci. Total Environ. 655, 220–231 (2019).

    Google Scholar 

  107. Dhandapani, S. et al. Land-use changes associated with oil palm plantations impact PLFA microbial phenotypic community structure throughout the depth of tropical peats. Wetlands 40, 2351–2366 (2020).

    Google Scholar 

  108. Mishra, S. et al. Microbial and metabolic profiling reveal strong influence of water table and land-use patterns on classification of degraded tropical peatlands. Biogeosciences 11, 1727–1741 (2014).

    Google Scholar 

  109. Mishra, S. et al. Degradation of Southeast Asian tropical peatlands and integrated strategies for their better management and restoration. J. Appl. Ecol. 58, 1370–1387 (2021). This paper reviews current understanding of intact and degraded peatlands in Southeast Asia and proposes an approach for peatland management and restoration involving explicit consideration of interacting ecological factors and the involvement of local communities.

    Google Scholar 

  110. Carlson, K. M., Goodman, L. K. & May-Tobin, C. C. Modeling relationships between water table depth and peat soil carbon loss in Southeast Asian plantations. Environ. Res. Lett. 10, 074006 (2015).

    Google Scholar 

  111. Carlson, K. M. et al. Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia. Proc. Natl Acad. Sci. USA 109, 7559–7564 (2012).

    Google Scholar 

  112. Couwenberg, J., Dommain, R. & Joosten, H. Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob. Change Biol. 16, 1715–1732 (2010).

    Google Scholar 

  113. Evans, C. D. et al. Overriding water table control on managed peatland greenhouse gas emissions. Nature 593, 548–552 (2021). Using data for CO2 and CH4 fluxes from all major peatland biomes, this paper demonstrates that greenhouse gas emissions from drained agricultural peatlands could be greatly reduced by raising water levels closer to the peat surface while maintaining productive agricultural use.

    Google Scholar 

  114. Hooijer, A. et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7, 1505–1514 (2010).

    Google Scholar 

  115. Hiraishi, T. et al. (eds) 2013 Supplement to the 2006 IPCC guidelines for national greenhouse gas inventories: wetlands (IPCC, 2014).

  116. Jauhiainen, J., Kerojoki, O., Silvennoinen, H., Limin, S. & Vasander, H. Heterotrophic respiration in drained tropical peat is greatly affected by temperature — a passive ecosystem cooling experiment. Environ. Res. Lett. 9, 105013 (2014).

    Google Scholar 

  117. Manning, F. C., Kho, L. K., Hill, T. C., Cornulier, T. & Teh, Y. A. Carbon emissions from oil palm plantations on peat soil. Front. For. Glob. Change https://doi.org/10.3389/ffgc.2019.00037 (2019).

    Article  Google Scholar 

  118. Deshmukh, C. S. et al. Impact of forest plantation on methane emissions from tropical peatland. Glob. Change Biol. 26, 2477–2495 (2020).

    Google Scholar 

  119. Wong, G. X. et al. How do land use practices affect methane emissions from tropical peat ecosystems? Agric. For. Meteorol. 282–283, 107869 (2020).

    Google Scholar 

  120. Pangala, S. R. et al. Large emissions from floodplain trees close the Amazon methane budget. Nature 552, 230–234 (2017).

    Google Scholar 

  121. Pangala, S. R., Moore, S., Hornibrook, E. R. C. & Gauci, V. Trees are major conduits for methane egress from tropical forested wetlands. N. Phytol. 197, 524–531 (2013).

    Google Scholar 

  122. Hergoualc’h, K. et al. Spatial and temporal variability of soil N2O and CH4 fluxes along a degradation gradient in a palm swamp peat forest in the Peruvian Amazon. Glob. Change Biol. 26, 7198–7216 (2020).

    Google Scholar 

  123. Teh, Y. A., Murphy, W. A., Berrio, J.-C., Boom, A. & Page, S. E. Seasonal variability in methane and nitrous oxide fluxes from tropical peatlands in the western Amazon basin. Biogeosciences 14, 3669–3683 (2017).

    Google Scholar 

  124. Hoyos-Santillan, J. et al. Evaluation of vegetation communities, water table, and peat composition as drivers of greenhouse gas emissions in lowland tropical peatlands. Sci. Total Environ. 688, 1193–1204 (2019).

    Google Scholar 

  125. van Haren, J. et al. A versatile gas flux chamber reveals high tree stem CH4 emissions in Amazonian peatland. Agric. For. Meteorol. 307, 108504 (2021).

    Google Scholar 

  126. Sjögersten, S. et al. Temperature response of ex-situ greenhouse gas emissions from tropical peatlands: interactions between forest type and peat moisture conditions. Geoderma 324, 47–55 (2018).

    Google Scholar 

  127. Girkin, N. T. et al. Spatial variability of organic matter properties determines methane fluxes in a tropical forested peatland. Biogeochemistry 142, 231–245 (2019).

    Google Scholar 

  128. Girkin, N. T., Turner, B. L., Ostle, N. & Sjögersten, S. Composition and concentration of root exudate analogues regulate greenhouse gas fluxes from tropical peat. Soil. Biol. Biochem. 127, 280–285 (2018).

    Google Scholar 

  129. Girkin, N. T., Vane, C. H., Turner, B. L., Ostle, N. J. & Sjögersten, S. Root oxygen mitigates methane fluxes in tropical peatlands. Environ. Res. Lett. 15, 064013 (2020).

    Google Scholar 

  130. Jauhiainen, J., Silvennoinen, H., Könönen, M., Limin, S. & Vasander, H. Management driven changes in carbon mineralization dynamics of tropical peat. Biogeochemistry 129, 115–132 (2016).

    Google Scholar 

  131. Wright, E. L. et al. Contribution of subsurface peat to CO2 and CH fluxes in a neotropical peatland. Glob. Change Biol. 17, 2867–2881 (2011).

    Google Scholar 

  132. Prananto, J. A., Minasny, B., Comeau, L., Rudiyanto, R. & Grace, P. Drainage increases CO2 and N2O emissions from tropical peat soils. Glob. Change Biol. 26, 4583–4600 (2020).

    Google Scholar 

  133. Peacock, M. et al. Global importance of methane emissions from drainage ditches and canals. Environ. Res. Lett. 16, 044010 (2021).

    Google Scholar 

  134. Chuang, P.-C. et al. Methane fluxes from tropical coastal lagoons surrounded by mangroves, Yucatán, Mexico. J. Geophys. Res. Biogeosci. 122, 1156–1174 (2017).

    Google Scholar 

  135. Jauhiainen, J. & Silvennoinen, H. Diffusion GHG fluxes at tropical peatland drainage canal water surfaces. Suoseura 63, 93–105 (2012).

    Google Scholar 

  136. Yupi, H. M., Inoue, T. & Bathgate, J. Concentrations, loads and yields of organic carbon from two tropical peat swamp forest streams in Riau Province, Sumatra, Indonesia. Mires Peat 18, 1–15 (2016).

    Google Scholar 

  137. Zhou, Y., Evans, C. D., Chen, Y., Chang, K. Y. W. & Martin, P. Extensive remineralization of peatland-derived dissolved organic carbon and ocean acidification in the Sunda Shelf Sea, Southeast Asia. J. Geophys. Res. Ocean. 126, e2021JC017292 (2021).

    Google Scholar 

  138. Alkhatib, M., Jennerjahn, T. C. & Samiaji, J. Biogeochemistry of the Dumai River estuary, Sumatra, Indonesia, a tropical black-water river. Limnol. Oceanogr. 52, 2410–2417 (2007).

    Google Scholar 

  139. Gandois, L. et al. From canals to the coast: dissolved organic matter and trace metal composition in rivers draining degraded tropical peatlands in Indonesia. Biogeosciences 17, 1897–1909 (2020).

    Google Scholar 

  140. Rixen, T. et al. The Siak, a tropical black water river in central Sumatra on the verge of anoxia. Biogeochemistry 90, 129–140 (2008).

    Google Scholar 

  141. Miettinen, J., Hooijer, A., Vernimmen, R., Liew, S. C. & Page, S. E. From carbon sink to carbon source: extensive peat oxidation in insular Southeast Asia since 1990. Environ. Res. Lett. 12, 024014 (2017).

    Google Scholar 

  142. Loisel, J. et al. Expert assessment of future vulnerability of the global peatland carbon sink. Nat. Clim. Chang. 11, 70–77 (2021).

    Google Scholar 

  143. Boysen, L. R. et al. Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle. Earth Syst. Dyn. 5, 309–319 (2014).

    Google Scholar 

  144. Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Google Scholar 

  145. Mitchard, E. T. A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).

    Google Scholar 

  146. Naidu, D. G. T. & Bagchi, S. Greening of the Earth does not compensate for rising soil heterotrophic respiration under climate change. Glob. Change Biol. 27, 2029–2038 (2021).

    Google Scholar 

  147. Li, W. et al. Future precipitation changes and their implications for tropical peatlands. Geophys. Res. Lett. 34, 01403 (2007).

    Google Scholar 

  148. Barichivich, J. et al. Recent intensification of Amazon flooding extremes driven by strengthened Walker circulation. Sci. Adv. 4, eaat8785 (2018).

    Google Scholar 

  149. Marengo, J. A. et al. Changes in climate and land use over the Amazon region: current and future variability and trends. Front. Earth Sci. 6, 228 (2018).

    Google Scholar 

  150. Cobb, A. R. et al. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands. Proc. Natl. Acad. Sci. USA 114, E5187–E5196 (2017).

    Google Scholar 

  151. Cai, W. et al. Increased variability of eastern Pacific El Niño under greenhouse warming. Nature 564, 201–206 (2018).

    Google Scholar 

  152. Rifai, S. W., Li, S. & Malhi, Y. Coupling of El Niño events and long-term warming leads to pervasive climate extremes in the terrestrial tropics. Environ. Res. Lett. 14, 105002 (2019).

    Google Scholar 

  153. Girkin, N. T. et al. Interactions between labile carbon, temperature and land use regulate carbon dioxide and methane production in tropical peat. Biogeochemistry 147, 87–97 (2020).

    Google Scholar 

  154. Cole, L. E. S., Bhagwat, S. A. & Willis, K. J. Long-term disturbance dynamics and resilience of tropical peat swamp forests. J. Ecol. 103, 16–30 (2015).

    Google Scholar 

  155. Weiss, D. et al. The geochemistry of major and selected trace elements in a forested peat bog, Kalimantan, SE Asia, and its implications for past atmospheric dust deposition. Geochim. Cosmochim. Acta 66, 2307–2323 (2002).

    Google Scholar 

  156. Lähteenoja, O. & Page, S. High diversity of tropical peatland ecosystem types in the Pastaza-Marañón basin, Peruvian Amazonia. J. Geophys. Res. 116, G02025 (2011).

    Google Scholar 

  157. Roucoux, K. H. et al. Vegetation development in an Amazonian peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 374, 242–255 (2013).

    Google Scholar 

  158. Lampela, M., Jauhiainen, J. & Vasander, H. Surface peat structure and chemistry in a tropical peat swamp forest. Plant. Soil. 382, 329–347 (2014).

    Google Scholar 

  159. Page, S. E., Rieley, J. O., Shotyk, Ø. W. & Weiss, D. Interdependence of peat and vegetation in a tropical peat swamp forest. Phil. Trans. R. Soc. Lond. B 354, 1885–1897 (1999).

    Google Scholar 

  160. Sjögersten, S., Cheesman, A. W., Lopez, O. & Turner, B. L. Biogeochemical processes along a nutrient gradient in a tropical ombrotrophic peatland. Biogeochemistry 104, 147–163 (2011).

    Google Scholar 

  161. Yule, C. M. Loss of biodiversity and ecosystem functioning in Indo-Malayan peat swamp forests. Biodivers. Conserv. 19, 393–409 (2010).

    Google Scholar 

  162. Basilier, K. Moss-associated nitrogen fixation in some mire and coniferous forest environments around Uppsala, Sweden. Lindbergia 5, 84–88 (1979).

    Google Scholar 

  163. Ong, C. S. P., Juan, J. C. & Yule, C. M. Litterfall production and chemistry of Koompassia malaccensis and Shorea uliginosa in a tropical peat swamp forest: plant nutrient regulation and climate relationships. Trees 29, 527–537 (2015).

    Google Scholar 

  164. Wüst, R. A. J. & Bustin, R. M. Opaline and Al–Si phytoliths from a tropical mire system of West Malaysia: abundance, habit, elemental composition, preservation and significance. Chem. Geol. 200, 267–292 (2003).

    Google Scholar 

  165. Neuzil, S. G., Cecil, C. B., Kane, J. S. & Soedjono, K. in Modern and Ancient Coal-Forming Environments Vol. 286 (Geological Society of America, 1993).

  166. Too, C. C., Keller, A., Sickel, W., Lee, S. M. & Yule, C. M. Microbial community structure in a Malaysian tropical peat swamp forest: the influence of tree species and depth. Front. Microbiol. 9, 2859 (2018).

    Google Scholar 

  167. Sulistiyanto, Y. Nutrient Dynamics in Different Sub-types of Peat Swamp Forest in Central Kalimantan, Indonesia. Thesis, Univ. Nottingham (2005).

  168. Hoyos Santillán, J. Controls of Carbon Turnover in Tropical Peatlands. Thesis, Univ. Nottingham (2014).

  169. Damman, A. W. H. Distribution and movement of elements in ombrotrophic peat bogs. Oikos 30, 480–495 (1978).

    Google Scholar 

  170. Laiho, R. & Laine, J. Nitrogen and phosphorus stores in peatlands drained for forestry in Finland. Scand. J. For. Res. 9, 251–260 (1994).

    Google Scholar 

  171. Wang, M., Moore, T. R., Talbot, J. & Riley, J. L. The stoichiometry of carbon and nutrients in peat formation. Glob. Biogeochem. Cycles 29, 113–121 (2015).

    Google Scholar 

  172. Hodgkins, S. B. et al. Tropical peatland carbon storage linked to global latitudinal trends in peat recalcitrance. Nat. Commun. 9, 3640 (2018).

    Google Scholar 

  173. Jackson, C. R., Liew, K. C. & Yule, C. M. Structural and functional changes with depth in microbial communities in a tropical Malaysian peat swamp forest. Microb. Ecol. 57, 402–412 (2009).

    Google Scholar 

  174. Kolb, S. & Horn, M. A. Microbial CH4 and NO consumption in acidic wetlands. Front. Microbiol. 3, 78 (2012).

    Google Scholar 

  175. Golovchenko, A. V., Tikhonova, E. Y. & Zvyagintsev, D. G. Abundance, biomass, structure, and activity of the microbial complexes of minerotrophic and ombrotrophic peatlands. Microbiology 76, 630–637 (2007).

    Google Scholar 

  176. Martikainen, P. J., Nykänen, H., Crill, P. & Silvola, J. Effect of a lowered water table on nitrous oxide fluxes from northern peatlands. Nature 366, 51–53 (1993).

    Google Scholar 

  177. Davidson, E. A., Keller, M., Erickson, H. E., Verchot, L. V. & Veldkamp, E. Testing a conceptual model of soil emissions of nitrous and nitric oxides. Bioscience 50, 667 (2000).

    Google Scholar 

  178. Rubol, S., Silver, W. L. & Bellin, A. Hydrologic control on redox and nitrogen dynamics in a peatland soil. Sci. Total Environ. 432, 37–46 (2012).

    Google Scholar 

  179. Jauhiainen, J. et al. Nitrous oxide fluxes from tropical peat with different disturbance history and management. Biogeosciences 9, 1337–1350 (2012).

    Google Scholar 

  180. Könönen, M., Jauhiainen, J., Laiho, R., Kusin, K. & Vasander, H. Physical and chemical properties of tropical peat under stabilised land uses. Mires Peat 16, 1–13 (2015).

    Google Scholar 

  181. Chotimah, H., Jaya, A., Suparto, H., Saraswati, D. & Nawansyah, W. Utilizing organic fertilizers on two types of soil to improve growth and yield of Bawang Dayak (Eleutherine americana Merr). Agrivita J. Agric. Sci. 43, 164–173 (2021).

    Google Scholar 

  182. Mohidin, H. et al. Optimum levels of N, P, and K nutrition for oil palm seedlings grown in tropical peat soil. J. Plant. Nutr. 42, 1461–1471 (2019).

    Google Scholar 

  183. Mutert, E., Fairhurst, T. H. & Von Uexküll, H. R. Agronomic management of oil palms on deep peat. Better. Crop. Int. 13, 22–27 (1999).

    Google Scholar 

  184. Hashim, S. A., Teh, C. B. S. & Ahmed, O. H. Influence of water table depths, nutrients leaching losses, subsidence of tropical peat soil and oil palm (Elaeis guineensis Jacq.) seedling growth. Malays. J. Soil. Sci. 23, 13–30 (2019).

    Google Scholar 

  185. Oktarita, S., Hergoualc’h, K., Anwar, S. & Verchot, L. V. Substantial N2O emissions from peat decomposition and N fertilization in an oil palm plantation exacerbated by hotspots. Environ. Res. Lett. 12, 104007 (2017).

    Google Scholar 

  186. Hoyos-Santillan, J. et al. Root oxygen loss from Raphia taedigera palms mediates greenhouse gas emissions in lowland neotropical peatlands. Plant. Soil. 404, 47–60 (2016).

    Google Scholar 

  187. Hatano, R. Impact of land use change on greenhouse gases emissions in peatland: a review. Int. Agrophys. 33, 167–173 (2019). This study reviews the impacts of changes in water-table level and nitrogen inputs on greenhouse gas emissions in tropical and northern peatlands and evaluates the optimal water-table level for minimizing emissions.

    Google Scholar 

  188. Zawawi, N. Z. et al. The effect of nitrogen fertiliser on nitrous oxide emission in oil palm plantation. Proc. 15th Int. Peat Congress 355, 515–518 (2016).

    Google Scholar 

  189. Turetsky, M. R. et al. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 8, 11–14 (2015). This paper reviews peatland vulnerability to burning, fire-driven carbon emissions and current and future risks of peatland fires.

    Google Scholar 

  190. Hu, Y. et al. Review of emissions from smouldering peat fires and their contribution to regional haze episodes. Int. J. Wildland Fire 27, 293–312 (2018).

    Google Scholar 

  191. Huijnen, V. et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 26886 (2016).

    Google Scholar 

  192. Smith, T. E. L., Evers, S., Yule, C. M. & Gan, J. Y. In situ tropical peatland fire emission factors and their variability, as determined by field measurements in peninsula Malaysia. Glob. Biogeochem. Cycles 32, 18–31 (2018).

    Google Scholar 

  193. Stockwell, C. E. et al. Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia, during the 2015 El Niño. Atmos. Chem. Phys. 16, 11711–11732 (2016).

    Google Scholar 

  194. Betha, R. et al. Chemical speciation of trace metals emitted from Indonesian peat fires for health risk assessment. Atmos. Res. 122, 571–578 (2013).

    Google Scholar 

  195. Breulmann, G. et al. Heavy metals in emergent trees and pioneers from tropical forest with special reference to forest fires and local pollution sources in Sarawak, Malaysia. Sci. Total Environ. 285, 107–115 (2002).

    Google Scholar 

  196. Othman, M. & Latif, M. T. Dust and gas emissions from small-scale peat combustion. Aerosol Air Qual. Res. 13, 1045–1059 (2013).

    Google Scholar 

  197. See, S. W., Balasubramanian, R. & Wang, W. A study of the physical, chemical, and optical properties of ambient aerosol particles in Southeast Asia during hazy and nonhazy days. J. Geophys. Res. 111, D10S08 (2006).

    Google Scholar 

  198. Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. D. & Mezbahuddin, S. Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan. Commun. Earth Env. 1, 65 (2020).

    Google Scholar 

  199. Field, R. D., van der Werf, G. R. & Shen, S. S. P. Human amplification of drought-induced biomass burning in Indonesia since 1960. Nat. Geosci. 2, 185–188 (2009).

    Google Scholar 

  200. Astiani, D., Taherzadeh, M. J., Gusmayanti, E., Widiastuti, T. & Burhanuddin, B. Local knowledge on landscape sustainable-hydrological management reduces soil CO2 emission, fire risk and biomass loss in west Kalimantan peatland, Indonesia. Biodiversiitas J. Biol. Divers. 20, 725–731 (2019).

    Google Scholar 

  201. Cattau, M. E. et al. Sources of anthropogenic fire ignitions on the peat-swamp landscape in Kalimantan, Indonesia. Glob. Environ. Change 39, 205–219 (2016).

    Google Scholar 

  202. Edwards, R. B., Naylor, R. L., Higgins, M. M. & Falcon, W. P. Causes of Indonesia’s forest fires. World Dev. 127, 104717 (2020).

    Google Scholar 

  203. Field, R. D. & Shen, S. S. P. Predictability of carbon emissions from biomass burning in Indonesia from 1997 to 2006. J. Geophys. Res. Biogeosci. 113, G04024 (2008).

    Google Scholar 

  204. Sloan, S., Locatelli, B., Wooster, M. J. & Gaveau, D. L. A. Fire activity in Borneo driven by industrial land conversion and drought during El Niño periods, 1982–2010. Glob. Environ. Change 47, 95–109 (2017).

    Google Scholar 

  205. Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).

    Google Scholar 

  206. World Bank. The cost of fire: an economic analysis of Indonesia’s 2015 fire crisis (World Bank, 2016).

  207. Tacconi, L. Preventing fires and haze in Southeast Asia. Nat. Clim. Chang. 6, 640–643 (2016).

    Google Scholar 

  208. Lupascu, M., Akhtar, H., Smith, T. E. L. & Sukri, R. S. Post-fire carbon dynamics in the tropical peat swamp forests of Brunei reveal long-term elevated CH4 flux. Glob. Change Biol. 26, 5125–5145 (2020).

    Google Scholar 

  209. Milner, L. E. Influence of Fire on Peat Organic Matter from Indonesian Tropical Peatlands. Thesis, Univ. Leicester (2013).

  210. Saharjo, B. H. & Nurhayati, A. D. Changes in chemical and physical properties of hemic peat under fire-based shifting cultivation. Tropics 14, 263–269 (2005).

    Google Scholar 

  211. Dhandapani, S. & Evers, S. Oil palm ‘slash-and-burn’ practice increases post-fire greenhouse gas emissions and nutrient concentrations in burnt regions of an agricultural tropical peatland. Sci. Total Environ. 742, 140648 (2020).

    Google Scholar 

  212. Konecny, K. et al. Variable carbon losses from recurrent fires in drained tropical peatlands. Glob. Change Biol. 22, 1469–1480 (2016).

    Google Scholar 

  213. Akhtar, H. et al. Significant sedge-mediated methane emissions from degraded tropical peatlands. Environ. Res. Lett. 16, 014002 (2020).

    Google Scholar 

  214. Rein, G. in Fire Phenomena and the Earth System (ed. Belcher, C. M.) 15–33 (Wiley, 2013).

  215. Graham, L. L. B. & Page, S. E. A limited seed bank in both natural and degraded tropical peat swamp forest: the implications for restoration. Mires Peat 22, 02 (2018).

    Google Scholar 

  216. Graham, E. B. et al. Microbes as engines of ecosystem function: when does community structure enhance predictions of ecosystem processes? Front. Microbiol. 7, 214 (2016).

    Google Scholar 

  217. Page, S. et al. Restoration ecology of lowland tropical peatlands in Southeast Asia: current knowledge and future research directions. Ecosystems 12, 888–905 (2009).

    Google Scholar 

  218. Sazawa, K. et al. Impact of peat fire on the soil and export of dissolved organic carbon in tropical peat soil, Central Kalimantan, Indonesia. ACS Earth Space Chem. 2, 692–701 (2018).

    Google Scholar 

  219. Dove, N. C. & Hart, S. C. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecol. 13, 37–65 (2017).

    Google Scholar 

  220. Veldkamp, E., Schmidt, M., Powers, J. S. & Corre, M. D. Deforestation and reforestation impacts on soils in the tropics. Nat. Rev. Earth Env. 1, 590–605 (2020).

    Google Scholar 

  221. Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).

    Google Scholar 

  222. Giesen, W. & Sari, E. N. N. Tropical peatland restoration report: the Indonesian case. MCA Indonesia https://doi.org/10.13140/RG.2.2.30049.40808 (2018).

    Article  Google Scholar 

  223. Dohong, A., Abdul Aziz, A. & Dargusch, P. A review of techniques for effective tropical peatland restoration. Wetlands 38, 275–292 (2018).

    Google Scholar 

  224. Shell. Redd+ Katingan Mentaya, Indonesia. Shell https://www.shell.co.uk/motorist/make-the-change-drive-carbon-neutral/redd-plus-katingan-mentaya-indonesia.html (2021).

  225. Uda, S. K., Hein, L. & Sumarga, E. Towards sustainable management of Indonesian tropical peatlands. Wetl. Ecol. Manag. 25, 683–701 (2017).

    Google Scholar 

  226. Wichtmann, W., Tanneberger, F., Wichmann, S. & Joosten, H. Paludiculture is paludifuture: climate, biodiversity and economic benefits from agriculture and forestry on rewetted peatland. Peatl. Int. 1, 48–51 (2010).

    Google Scholar 

  227. Giesen, W. in Tropical Peatland Eco-Management (eds Osaki, M., Tsuji, N., Foead, N. & Rieley, J.) 411–441 (Springer, 2021).

  228. Shurpali, N. J. et al. Atmospheric impact of bioenergy based on perennial crop (reed canary grass, Phalaris arundinaceae, L.) cultivation on a drained boreal organic soil. GCB Bioenergy 2, 130–138 (2010).

    Google Scholar 

  229. Lawson, I. T. et al. Improving estimates of tropical peatland area, carbon storage, and greenhouse gas fluxes. Wetl. Ecol. Manag. 23, 327–346 (2015).

    Google Scholar 

  230. Anda, M. et al. Revisiting tropical peatlands in Indonesia: semi-detailed mapping, extent and depth distribution assessment. Geoderma 402, 115235 (2021).

    Google Scholar 

  231. Saxon, E. C., Neuzil, S. G., Biladi, D. B. C., Kinser, J. & Sheppard, S. M. 3D mapping of lowland coastal peat domes in Indonesia. Mires Peat 27, 1–18 (2021).

    Google Scholar 

  232. Silvestri, S. et al. Quantification of peat thickness and stored carbon at the landscape scale in tropical peatlands: a comparison of airborne geophysics and an empirical topographic method. J. Geophys. Res. Earth Surf. 124, 3107–3123 (2019).

    Google Scholar 

  233. Vernimmen, R. et al. Mapping deep peat carbon stock from a LiDAR based DTM and field measurements, with application to eastern Sumatra. Carbon Balance Manag. 15, 4 (2020).

    Google Scholar 

  234. Andersen, R., Chapman, S. J. & Artz, R. R. E. Microbial communities in natural and disturbed peatlands: a review. Soil. Biol. Biochem. 57, 979–994 (2013).

    Google Scholar 

  235. Morrison, E. S. et al. Characterization of bacterial and fungal communities reveals novel consortia in tropical oligotrophic peatlands. Microb. Ecol. 82, 188–201 (2020).

    Google Scholar 

  236. Finn, D. R. et al. Methanogens and methanotrophs show nutrient-dependent community assemblage patterns across tropical peatlands of the Pastaza–Marañón Basin, Peruvian Amazonia. Front. Microbiol. 11, 746 (2020).

    Google Scholar 

  237. Troxler, T. G. et al. Patterns of soil bacteria and canopy community structure related to tropical peatland development. Wetlands 32, 769–782 (2012).

    Google Scholar 

  238. Tripathi, B. M. et al. Distinctive tropical forest variants have unique soil microbial communities, but not always low microbial diversity. Front. Microbiol. 7, 376 (2016).

    Google Scholar 

  239. Kwon, M. J., Haraguchi, A. & Kang, H. Long-term water regime differentiates changes in decomposition and microbial properties in tropical peat soils exposed to the short-term drought. Soil. Biol. Biochem. 60, 33–44 (2013).

    Google Scholar 

  240. Hadi, A. et al. Effects of land-use change in tropical peat soil on the microbial population and emission of greenhouse gases. Microbes Env. 16, 79–86 (2001).

    Google Scholar 

  241. Kusai, N. A., Ayob, Z., Maidin, M. S. T., Safari, S. & Ahmad Ali, S. R. Characterization of fungi from different ecosystems of tropical peat in Sarawak, Malaysia. Rendiconti Lincei Sci. Fis. E 29, 469–482 (2018).

    Google Scholar 

  242. Shuhada, S. N., Salim, S., Nobilly, F., Zubaid, A. & Azhar, B. Logged peat swamp forest supports greater macrofungal biodiversity than large-scale oil palm plantations and smallholdings. Ecol. Evol. 7, 7187–7200 (2017).

    Google Scholar 

  243. Liu, B. et al. The microbial diversity and structure in peatland forest in Indonesia. Soil. Use Manag. 36, 123–138 (2020).

    Google Scholar 

  244. Moyersoen, B., Becker, P. & Alexander, I. J. Are ectomycorrhizas more abundant than arbuscular mycorrhizas in tropical heath forests? N. Phytol. 150, 591–599 (2001).

    Google Scholar 

  245. Muliyani, R. B., Sastrahidayat, I. R., Abdai, A. L. & Djauhari, S. Exploring ectomycorrhiza in peat swamp forest of Nyaru Menteng Palangka Raya Central Borneo. J. Biodivers. Environ. Sci. 5, 133–145 (2014).

    Google Scholar 

  246. Turjaman, M. et al. Improvement of early growth of two tropical peat-swamp forest tree species Ploiarium alternifolium and Calophyllum hosei by two arbuscular mycorrhizal fungi under greenhouse conditions. New Forests 36, 1–12 (2008).

    Google Scholar 

  247. Tawaraya, K. et al. Arbuscular mycorrhizal colonization of tree species grown in peat swamp forests of Central Kalimantan, Indonesia. For. Ecol. Manag. 182, 381–386 (2003).

    Google Scholar 

  248. Fenner, N. & Freeman, C. Drought-induced carbon loss in peatlands. Nat. Geosci. 4, 895–900 (2011).

    Google Scholar 

  249. Yuwati, T. W. & Putri, W. S. Diversity of arbuscular mycorrhiza spores under Shorea balangeran (Korth.) Burck. plantation as bioindicator for the revegetation success. J. Galam 1, 15–26 (2020).

    Google Scholar 

  250. Graham, L. L. B., Turjaman, M. & Page, S. E. Shorea balangeran and Dyera polyphylla (syn. Dyera lowii) as tropical peat swamp forest restoration transplant species: effects of mycorrhizae and level of disturbance. Wetl. Ecol. Manag. 21, 307–321 (2013).

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the following research programmes and funding sources. S.P., C.D.E., S.S., S.E., G.A., A.J. and A.J.J.-S. were supported by the SUSTAINPEAT project (‘Overcoming barriers to sustainable livelihoods and environments in smallholder agricultural systems on tropical peatland’), funded by United Kingdom Research and Innovation (UKRI) via the Global Challenges Research Fund and the Biotechnology and Biological Sciences Research Council (BBSRC), grant number BB/P023533/1. The authors are grateful to the Ministry of Research Technology and Higher Education of Indonesia (RISTEKDIKTI) for their support of this project. S.P., G.D., I.A.S., A.J.J.-S. and S.S. were supported by the CongoPeat project, funded by UKRI via the Natural Environment Research Council (NERC), grant number NE/R016860/1. C.D.E. received additional support from the SUNRISE project (‘Sustainable use of natural resources to improve human health and support economic development’) via NERC, grant number NE/R000131/1. J.J. was supported by the TROPDEC project (‘Tropical peat decomposition under land use change: adaptation to resources and conditions’) funded by the Academy of Finland, project identifier 310194.

Author information

Authors and Affiliations

Authors

Contributions

S.P. and C.D.E. devised the structure of the review and led the writing. S.M., A.L. and C.D.E. contributed both to the writing and to the design of the figures. All other authors contributed equally to the writing.

Corresponding author

Correspondence to Susan Page.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Earth & Environment thanks Lulie Melling, who co-reviewed with Faustina Sangok, Zicheng Yu and Massimo Lupascu for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Page, S., Mishra, S., Agus, F. et al. Anthropogenic impacts on lowland tropical peatland biogeochemistry. Nat Rev Earth Environ 3, 426–443 (2022). https://doi.org/10.1038/s43017-022-00289-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s43017-022-00289-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing