Skip to main content

Advertisement

Log in

Cognitive Decline Is Closely Associated with Ataxia Severity in Spinocerebellar Ataxia Type 2: a Validation Study of the Schmahmann Syndrome Scale

  • Original Article
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellar cognitive affective syndrome scale (CCAS-S) was designed to detect specific cognitive dysfunctions in cerebellar patients but is scarcely validated in spinocerebellar ataxias (SCA). The objective of this study is to determine the usefulness of the CCAS-S in a Cuban cohort of SCA2 patients and the relationship of its scores with disease severity. The original scale underwent a forward and backward translation into Spanish language, followed by a pilot study to evaluate its comprehensibility. Reliability, discriminant, and convergent validity assessments were conducted in 64 SCA2 patients and 64 healthy controls matched for sex, age, and education. Fifty patients completed the Montreal Cognitive Assessment (MoCA) test. The CCAS-S showed an acceptable internal consistency (Cronbach’s alpha = 0.74) while its total raw score and the number of failed tests showed excellent (ICC = 0.94) and good (ICC = 0.89) test–retest reliability, respectively. Based on original cut-offs, the sensitivity of CCAS-S to detect possible/probable/definite CCAS was notably high (100%/100%/91%), but specificities were low (6%/30/64%) because the decreased specificity observed in four items. CCAS-S performance was significantly influenced by ataxia severity in patients and by education in both groups. CCAS-S scores correlated with MoCA scores, but showed higher sensitivity than MoCA to detect cognitive impairments in patients. The CCAS-S is particularly useful to detect cognitive impairments in SCA2 but some transcultural and/or age and education-dependent adaptations could be necessary to improve its diagnostic properties. Furthermore, this scale confirmed the parallelism between cognitive and motor deficits in SCA2, giving better insights into the disease pathophysiology and identifying novel outcomes for clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Schmahmann JD, Guell X, Stoodley CJ, Halko MA. The theory and neuroscience of cerebellar cognition. Annu Rev Neurosci. 2019;42:337–64.

    Article  CAS  PubMed  Google Scholar 

  2. Schmahmann JD, Caplan D. Cognition, emotion and the cerebellum. Brain. 2006;129:290–2.

    Article  PubMed  Google Scholar 

  3. Schmahmann JD. The cerebellum and cognition. Neurosci Lett. 2019;688:62–75. Available from: https://doi.org/10.1016/j.neulet.2018.07.005.

  4. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998;121:561–79.

    Article  PubMed  Google Scholar 

  5. Ahmadian N. The cerebellar cognitive affective syndrome — a meta-analysis. Cerebellum. 2019;18(5):941–50.

  6. Hoche F, Guell X, Vangel MG, Sherman JC, Schmahmann JD. The cerebellar cognitive affective/Schmahmann syndrome scale. Brain. 2017;141:248–70.

    Article  PubMed Central  Google Scholar 

  7. Thieme A, Roeske S, Faber J, Sulzer P, Minnerop M, Elben S, et al. Validation of a German version of the cerebellar cognitive affective/Schmahmann syndrome scale: preliminary version and study protocol. Neurol Res Pr. 2020;2:39.

    Article  Google Scholar 

  8. Thieme A, Roeske S, Faber J, Sulzer P, Minnerop M, Elben S, et al. Reference values for the cerebellar cognitive affective syndrome scale: age and education matter. Brain. 2021;144:e20.

    Article  PubMed  Google Scholar 

  9. Schmahmann JD, Vangel MG, Hoche F, Guell X, Sherman JC. Reply: reference values for the cerebellar cognitive affective syndrome scale: age and education matter. Brain. 2021;144:e21.

    Article  PubMed  Google Scholar 

  10. Seidel K, Siswanto S, Brunt ERP, Den Dunnen W, Korf HW, Rüb U. Brain pathology of spinocerebellar ataxias. Acta Neuropathol. 2012;124:1–21.

    Article  CAS  PubMed  Google Scholar 

  11. Manto M, Lorivel T. Cognitive repercussions of hereditary cerebellar disorders. Cortex.  2011;47:81–100. Available from: https://doi.org/10.1016/j.cortex.2009.04.012.

  12. Lindsay E, Storey S. Cognitive changes in the spinocerebellar ataxias due to expanded polyglutamine tracts: a survey of the literature. Brain Sci. 2017;7:83.

  13. Maas RPPWM, Killaars S, Warrenburg BPC Van De, Schutter DJLG. The cerebellar cognitive affective syndrome scale reveals early neuropsychological deficits in SCA3 patients. J Neurol. 2021;3:12–4. Available from: https://doi.org/10.1007/s00415-021-10516-7.

  14. Rodríguez-Labrada R, Velázquez-Pérez L, Ortega-Sánchez R, Peña-Acosta A, Vázquez-Mojena Y, Canales-Ochoa N, et al. Insights into cognitive decline in spinocerebellar ataxia type 2: a P300 event-related brain potential study. Cerebellum Ataxias. 2019;6:3. https://doi.org/10.1186/s40673-019-0097-2.

  15. Velázquez-Pérez L, Rodríguez-Labrada R, Cruz-Rivas EM, Fernández-Ruiz J, Vaca-Palomares I, Lilia-Campins J, et al. Comprehensive study of early features in spinocerebellar ataxia 2: delineating the prodromal stage of the disease. Cerebellum. 2014;13:568–79.

  16. Rodríguez-Labrada R, Velázquez-Pérez L, Aguilera-Rodríguez R, Seifried-Oberschmidt C, Peña-Acosta A, Canales-Ochoa N, et al. Executive deficit in spinocerebellar ataxia type 2 is related to expanded CAG repeats: evidence from antisaccadic eye movements. Brain Cogn. 2014;91:28–34.

    Article  PubMed  Google Scholar 

  17. Pulst MS, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet. 1996;14:269–76.

    Article  CAS  PubMed  Google Scholar 

  18. Velázquez-Pérez L, Medrano-Montero J, Rodríguez-Labrada R, Canales-Ochoa N, Campins Alí J, Carrillo Rodes FJ, et al. Hereditary ataxias in cuba: a nationwide epidemiological and clinical study in 1001 patients. Cerebellum. 2020;19:252–64.

    Article  PubMed  Google Scholar 

  19. Velázquez Pérez L, Cruz GS, Santos Falcón N, Enrique AlmaguerMederos L, EscalonaBatallan K, Rodríguez Labrada R, et al. Molecular epidemiology of spinocerebellar ataxias in Cuba: insights into SCA2 founder effect in Holguin. Neurosci Lett. 2009;454:157–60.

    Article  PubMed  CAS  Google Scholar 

  20. Denny BD. Handbook of neurological examination and case recording. 3rd ed. Harvard: Cambirdge; 1960.

    Google Scholar 

  21. Schmitz-Hubsch T, du Montcel ST, Baliko L, Berciano J, Boesch S, Depondt C, et al. Scale for the assessment and rating of ataxia: development of a new clinical scale. Neurology. 2006;66:1717–20.

    Article  CAS  PubMed  Google Scholar 

  22. Schmitz-Hübsch T, Coudert M, Bauer P, Giunti P, Globas C, Baliko L, et al. Spinocerebellar ataxia types 1, 2, 3, and 6: disease severity and nonataxia symptoms. Neurology. 2008;71:982–9.

    Article  PubMed  Google Scholar 

  23. Velázquez-Pérez LC, Rodríguez-Labrada R, Fernandez-Ruiz J. Spinocerebellar ataxia type 2: clinicogenetic aspects, mechanistic insights, and management approaches. Front Neurol. 2017;8:472.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;56:695–9.

    Article  Google Scholar 

  25. Unal I. Defining an optimal cut-point value in ROC analysis: an alternative approach. Comput Math Methods Med. 2017;2017:3762651. https://doi.org/10.1155/2017/3762651.

  26. Wild D, Grove A, Martin M, Eremenco S, Mcelroy S, Verjee-lorenz A, et al. Principles of good practice for the translation and cultural adaptation process for patient-reported outcomes (PRO) measures: report of the ISPOR task force for translation and cultural adaptation. Value Heal. 2005;8:94–104. https://doi.org/10.1111/j.1524-4733.2005.04054.x.

    Article  Google Scholar 

  27. Imbert G, Saudou F, Yvert G, Devys D, Trottier YGJ. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet. 1996;14:285–91.

    Article  CAS  PubMed  Google Scholar 

  28. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155–63.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cohen J. Statistical power analysis for the behavioural sciences. 1st ed. New York: Academic Press; 1969.

    Google Scholar 

  30. DeLong ER, Delong EMC-PD. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

    Article  CAS  PubMed  Google Scholar 

  31. Burk K, Globas C, Bosch S, Graber S, Abele M, Dichgags J, Dum IKT. Cognitive deficits in spinocerebellar ataxia 2. Brain. 1999;122:769–77.

    Article  PubMed  Google Scholar 

  32. Storey E, Forrest SM, Shaw JH, Mitchell P, Gardner RJMK. Spinocerebellar ataxia type 2: clinical features of a pedigree displaying prominent frontal-executive dysfunction. Arch Neurol. 1999;56:43–50.

    Article  CAS  PubMed  Google Scholar 

  33. Le Pira F, Zappalà G, Saponara R, Domina E, Restivo DA, Reggio E, et al. Cognitive findings in spinocerebellar ataxia type 2: relationship to genetic and clinical variables. J Neurol Sci. 2002;201:53–7.

    Article  PubMed  Google Scholar 

  34. Isabel Martín G, Cristina Mercader C, Onay Adonis MMC. Intervenciones para promover el consumo de hortalizas y frutas en Cuba. Rev Chil Nutr. 2006;33:301–5.

    Google Scholar 

  35. Le PF, Zappalà G, Catania U, Sofia VS. Dissociation between motor and cognitive impairments in SCA2: evidence from a follow-up study. J Neurol. 2007;254:1455–6.

    Article  Google Scholar 

  36. Fancellu R, Paridi D, Tomasello C, Panzeri M, Castaldo A, Genitrini S, et al. Longitudinal study of cognitive and psychiatric functions in spinocerebellar ataxia types 1 and 2. J Neurol. 2013;260:3134–43.

    Article  PubMed  Google Scholar 

  37. Vaca-Palomares I, Díaz R, Rodríguez-Labrada R, Medrano-Montero J, Aguilera-Rodríguez R, Vázquez-Mojena Y, et al. Strategy use, planning, and rule acquisition deficits in spinocerebellar ataxia type 2 patients. 2015;21(3):214–20.

  38. Gigante AF, Lelli G, Romano R, Pellicciari R, Di CA, Mancino PV, et al. The relationships between ataxia and cognition in spinocerebellar ataxia type 2. Cerebellum. 2020;19:40–7.

    Article  CAS  PubMed  Google Scholar 

  39. Naeije G, Rai M, Allaerts N, Sjogard M, De Tiège X, Pandolfo M. Cerebellar cognitive disorder parallels cerebellar motor symptoms in Friedreich ataxia. Ann Clin Transl Neurol. 2020;7(6)1050–4.

  40. Sonni A. Sleep, and its relation to non-motor deficits in patients with cerebellar ataxia. Doctoral dissertation]. [Amherst, Massachusetts]: University of Massachusetts Amherst, Amherst; 2019. Retrieved from scholarworks@UMassAmherst (1209)

  41. Stephen CD, Chb MB, Uk M, Balkwill D, James P, Haxton E. Quantitative oculomotor and nonmotor assessments in late-onset GM2 gangliosidosis. Neurology. 2020;94:e705–17.

  42. Stoodley CJ, Schmahmann JD. Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. Neuroimage. 2009;44:489–501. Available from: https://doi.org/10.1016/j.neuroimage.2008.08.039.

  43. King M, Hernandez-Castillo CR, Poldrack RA, Ivry RB, Diedrichsen J. Functional boundaries in the human cerebellum revealed by a multi-domain task battery. Nat Neurosci. 2019;22:1371–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jung BC, Choi SI, Du AX, Cuzzocreo JL, Ying HS, Landman BA, et al. MRI shows a region-specific pattern of atrophy in spinocerebellar ataxia type 2. Cerebellum. 2012;11:272–9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hoche F, Balikó L, Den DW, Steinecker K. Spinocerebellar ataxia type 2 (SCA2): identification of early brain degeneration in one monozygous twin in the initial disease stage. Cerebellum. 2011;10:245–53.

    Article  PubMed  Google Scholar 

  46. Olivito G, Cercignani M, Lupo M, Iacobacci C, Clausi S, Romano S, Masciullo M, Molinari M, Bozzali M, Leggio M. Neural substrates of motor and cognitive dysfunctions in SCA2 patients: a network-based statistics analysis. NeuroImage Clin. 2017;17:719–25.

    Article  Google Scholar 

  47. Olivito G, Siciliano L, Clausi & S, Lupo & M, Romano & S, Masciullo & M, , et al. Functional changes of mentalizing network in SCA2 patients: novel insights into understanding the social cerebellum. Cerebellum. 2020;19:235–42.

    Article  CAS  PubMed  Google Scholar 

  48. Rüb U, Farrag K, Seidel K, Brunt ER, Heinsen H, Bürk K, et al. Involvement of the cholinergic basal forebrain nuclei in spinocerebellar ataxia type 2 (SCA2). Neuropathol Appl Neurobiol. 2013;2:634–43.

    Article  CAS  Google Scholar 

  49. Rub U, Del Turco D, Del Tredici K, de Vos RAI, Brunt ER, Reifenberger G, Seifried C, Schultz C, Auburger G, Braak H. Thalamic involvement in a spinocerebellar ataxia type 2 (SCA2) and a spinocerebellar ataxia type 3 (SCA3) patient, and its clinical relevance. Brain. 2003;126:2257–72.

    Article  CAS  PubMed  Google Scholar 

  50. Reetz K, Rodríguez-Labrada R, Dogan I, Mirzazade S, Romanzetti S, Schulz JB, et al. Brain atrophy measures in preclinical and manifest spinocerebellar ataxia type 2. Ann Clin Transl Neurol. 2018;5:128–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Agata FD, Caroppo P, Boghi A, Coriasco M, Caglio M. Linking coordinative and executive dysfunctions to atrophy in spinocerebellar ataxia 2 patients. Brain Struct Funct. 2011;216:275–88.

    Article  PubMed  CAS  Google Scholar 

  52. Paap BK, Roeske S, Durr A, Schöls L, Ashizawa T, Boesch S, et al. Standardized assessment of hereditary ataxia patients in clinical studies. Mov Disord Clin Pract. 2016;3:230–40.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bolton C, Lacy M. Comparison of cognitive profiles in spinocerebellar ataxia subtypes: a case series. Cerebellum Ataxias. 2019;6:13. https://doi.org/10.1186/s40673-019-0107-4.

  54. Kawai Y, Suenaga M, Watanabe H, Sobue G. Cognitive impairment in spinocerebellar degeneration. Eur Neurol. 2009;61:257–68.

    Article  CAS  PubMed  Google Scholar 

  55. Ma J, Wu C, Lei J, Zhang X. Cognitive impairments in patients with spinocerebellar ataxia types 1, 2 and 3 are positively correlated to the clinical severity of ataxia symptoms. Int J Clin Exp Med. 2014;7:5765–71.

    PubMed  PubMed Central  Google Scholar 

  56. Chirino A, Oscar P, Marrufo R, José M, Muñoz I, Ruiz JF. Mapping the cerebellar cognitive affective syndrome in patients with chronic cerebellar strokes. Cerebellum. 2021; Jun 9. https://doi.org/10.1007/s12311-021-01290-3

  57. Cuza A, editor. Cuban Spanish dialectology. Washington DC: Georgetown University Press; 2017.

  58. Arango-Lasprilla J. Commonly used neuropsychological tests for Spanish speakers: normative data from Latin America. NeuroRehabilitation. 2015;37:489–91.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We express our gratitude to all SCA2 patients and healthy controls for their cooperation and to the Cuban Ministry of Public Health for providing the research funds. In addition, this study was funded by the German Federal Ministry of Education and Research (BMBF 01DN18022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roberto Rodríguez-Labrada or Luis Velázquez-Pérez.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 89 KB)

Supplementary file2 (DOC 54 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez-Labrada, R., Batista-Izquierdo, A., González-Melix, Z. et al. Cognitive Decline Is Closely Associated with Ataxia Severity in Spinocerebellar Ataxia Type 2: a Validation Study of the Schmahmann Syndrome Scale. Cerebellum 21, 391–403 (2022). https://doi.org/10.1007/s12311-021-01305-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-021-01305-z

Keywords

Navigation