Skip to main content
Log in

A sufficient condition for a polyhedron to be rigid

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

We study oriented connected closed polyhedral surfaces with non-degenerate triangular faces in three-dimensional Euclidean space, calling them polyhedra for short. A polyhedron is called flexible if its spatial shape can be changed continuously by changing its dihedral angles only. We prove that for every flexible polyhedron some integer combination of its dihedral angles remains constant during the flex. The proof is based on a recent result of A. A. Gaifullin and L. S. Ignashchenko.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander, R.: Lipschitzian mappings and total mean curvature of polyhedral surfaces. I. Trans. Am. Math. Soc. 288(2), 661–678 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alexandrov, A.D.: Convex Polyhedra. Springer, Berlin (2005)

    MATH  Google Scholar 

  3. Alexandrov, V.: Flexible polyhedra in Minkowski 3-space. Manuscr. Math. 111(3), 341–356 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alexandrov, V.: The Dehn invariants of the Bricard octahedra. J. Geom. 99(1–2), 1–13 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Asimow, L., Roth, B.: The rigidity of graphs. II. J. Math. Anal. Appl. 68, 171–190 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bricard, R.: Mémoire sur la théorie de l’octaèdre articulé. J. Math. 5(3), 113–148 (1897)

    MATH  Google Scholar 

  7. Connelly, R.: A counterexample to the rigidity conjecture for polyhedra. Publ. Math. Inst. Hautes Étud. Sci. 47, 333–338 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Connelly, R.: Conjectures and open questions in rigidity. In: Lehto, O. (ed.) Proceedings of the International Congress of Mathematicians, Helsinki 1978, vol. 1, pp. 407–414. Finnish Academy of Sciences, Helsinki (1980)

    Google Scholar 

  9. Connelly, R., Sabitov, I., Walz, A.: The Bellows conjecture. Beitr. Algebra Geom. 38(1), 1–10 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Connelly, R., Gortler, S.J.: Prestress stability of triangulated convex polytopes and universal second-order rigidity. SIAM J. Discrete Math. 31(4), 2735–2753 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dehn, M.: Über die Starrheit konvexer Polyeder. Math. Ann. 77, 466–473 (1916)

    Article  MathSciNet  MATH  Google Scholar 

  12. Finbow-Singh, W., Whiteley, W.: Isostatic block and hole frameworks. SIAM J. Discrete Math. 27(2), 991–1020 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fogelsanger, A.: The generic rigidity of minimal cycles. Ph.D. thesis, Cornell University (1987). http://www.armadillodanceproject.com/AF/Cornell/rigidity.htm

  14. Gaifullin, A.A.: Sabitov polynomials for volumes of polyhedra in four dimensions. Adv. Math. 252, 586–611 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gaifullin, A.A.: Generalization of Sabitov’s theorem to polyhedra of arbitrary dimensions. Discrete Comput. Geom. 52(2), 195–220 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gaifullin, A.A.: Flexible cross-polytopes in spaces of constant curvature. Proc. Steklov Inst. Math. 286, 77–113 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Gaifullin, A.A.: Embedded flexible spherical cross-polytopes with nonconstant volumes. Proc. Steklov Inst. Math. 288, 56–80 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Gaifullin, A.A.: The analytic continuation of volume and the Bellows conjecture in Lobachevsky spaces. Sb. Math. 206(11), 1564–1609 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gaifullin, A.A.: Flexible polyhedra and their volumes. In: Mehrmann, V., Skutella, M. (eds.) European Congress of Mathematics, Berlin 2016, vol. 1, pp. 63–84. European Mathematical Society, Zürich (2018). A preliminary version is available at arXiv:1605.09316

  20. Gaifullin, A.A.: The Bellows conjecture for small flexible polyhedra in non-Euclidean spaces. Mosc. Math. J. 17(2), 269–290 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gaifullin, A.A., Ignashchenko, L.S.: Dehn invariant and scissors congruence of flexible polyhedra. Proc. Steklov Inst. Math. 302, 130–145 (2018). A preliminary version is available at arXiv:1710.11247

    Article  MathSciNet  MATH  Google Scholar 

  22. Gluck, H.: Almost all simply connected closed surfaces are rigid. In: Glaser, L.C., Rushing, T.B. (eds.) Geometric Topology. Lect. Notes Math., vol. 438, pp. 225–239. Springer, Berlin (1975)

    Chapter  Google Scholar 

  23. Hopf, H.: Differential Geometry in the Large. Lect. Notes Math., vol. 1000, 2nd edn. Springer, Berlin (1989)

    Book  Google Scholar 

  24. Kuiper, N.H.: Sphères polyedriques flexibles dans \(E^3\), d’apres Robert Connelly. In: Seminaire Bourbaki, vol. 1977/78, Expose No. 514, Lect. Notes Math. 710, pp. 147–168 (1979)

  25. Kuratowski, K.: Topology. Vol. II. New edition, Revised and Augmented. Academic Press, New York (1968)

    MATH  Google Scholar 

  26. Lebesgue, H.: Octaedres articules de Bricard. Enseign. Math.II. Sér. 13, 175–185 (1967)

    MathSciNet  MATH  Google Scholar 

  27. Nixon, A., Schulze, B.: Symmetry-forced rigidity of frameworks on surfaces. Geom. Dedicata 182, 163–201 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Pogorelov, A.V.: Extrinsic Geometry of Convex Surfaces. Translations of Mathematical Monographs, vol. 35. American Mathematical Society, Providence (1973)

    Book  Google Scholar 

  29. Sabitov, I.Kh.: On the problem of invariance of the volume of a flexible polyhedron. Russ. Math. Surv. 50(2), 451–452 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sabitov, I.Kh.: The volume of a polyhedron as a function of its metric (in Russian). Fundam. Prikl. Mat. 2(4), 1235–1246 (1996)

  31. Sabitov, I.Kh.: The volume as a metric invariant of polyhedra. Discrete Comput. Geom. 20(4), 405–425 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sabitov, I.Kh.: Algorithmic solution of the problem of isometric realization for two-dimensional polyhedral metrics. Izv. Math. 66(2), 377–391 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sabitov, I.Kh.: Around the proof of the Legendre-Cauchy lemma on convex polygons. Sib. Math. J. 45(4), 740–762 (2004)

    Article  MathSciNet  Google Scholar 

  34. Schlenker, J.-M.: La conjecture des soufflets (d’après I. Sabitov). In: Seminaire Bourbaki, vol. 2002/03, Exposes, pp. 909–923. Société Mathématique de France, Paris. Astérisque 294, 77–95, Exp. No. 912 (2004)

  35. Shtogrin, M.I.: On flexible polyhedral surfaces. Proc. Steklov Inst. Math. 288, 153–164 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Stachel, H.: Flexible cross-polytopes in the Euclidean 4-space. J. Geom. Graph. 4(2), 159–167 (2000)

    MathSciNet  MATH  Google Scholar 

  37. Stachel, H.: Flexible octahedra in the hyperbolic space. In: Prékopa, A., Molnár, E. (eds.) Non-Euclidean Geometries. János Bolyai memorial volume, pp. 209–225. Springer, New York (2006)

    Chapter  Google Scholar 

  38. Stoker, J.J.: Geometrical problems concerning polyhedra in the large. Commun. Pure Appl. Math. 21, 119–168 (1968)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Alexander A. Gaifullin and Idzhad Kh. Sabitov for their comments on a preliminary version of this article and to an anonymous referee for several useful comments and constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Alexandrov.

Ethics declarations

Conflict of interest

The author states that he does not have any conflicts of interest to declare.

Additional information

Dedicated to Academician Yuriĭ Grigor’evich Reshetnyak on the occasion of his 90th birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alexandrov, V. A sufficient condition for a polyhedron to be rigid. J. Geom. 110, 38 (2019). https://doi.org/10.1007/s00022-019-0492-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-019-0492-0

Keywords

Mathematics Subject Classification

Navigation