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Abstract

Conditional selective inference (SI) has been ac-
tively studied as a new statistical inference frame-
work for data-driven hypotheses. The basic idea
of conditional SI is to make inferences conditional
on the selection event characterized by a set of
linear and/or quadratic inequalities. Conditional
SI has been mainly studied in the context of fea-
ture selection such as stepwise feature selection
(SFS). The main limitation of the existing con-
ditional ST methods is the loss of power due to
over-conditioning, which is required for computa-
tional tractability. In this study, we develop a more
powerful and general conditional SI method for
SFS using the homotopy method which enables
us to overcome this limitation. The homotopy-
based Sl is especially effective for more compli-
cated feature selection algorithms. As an example,
we develop a conditional SI method for forward-
backward SFS with AIC-based stopping criteria,
and show that it is not adversely affected by the in-
creased complexity of the algorithm. We conduct
several experiments to demonstrate the effective-
ness and efficiency of the proposed method.

1. Introduction

As machine learning (ML) is being applied to a greater vari-
ety of practical problems, ensuring the reliability of ML is
becoming increasingly important. Among several potential
approaches to reliable ML, conditional selective inference
(SI) is recognized as a promising approach for evaluating the
statistical reliability of data-driven hypotheses selected by
ML algorithms. The basic idea of conditional SI is to make
inference on a data-driven hypothesis conditional on the
selection event that the hypothesis is selected. Conditional
SI has been actively studied especially in the context of
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feature selection. Notably, Lee et al. (2016) and Tibshirani
et al. (2016) proposed conditional SI methods for selected
features using Lasso and stepwise feature selection (SFS),
respectively. Their basic idea is to characterize the selection
event by a polytope, i.e., a set of linear inequalities, in a
sample space. When a selection event can be characterized
by a polytope, practical computational methods developed
by these authors can be used for making inferences of the
selected hypotheses conditional on the selection events.

Unfortunately, however, such polytope-based SI has several
limitations because it can only be used when the character-
ization of all relevant selection events is represented by a
polytope. In fact, in most of the existing polytope-based
SI studies, extra-conditioning is required in order for the
selection event to be characterized as a polytope. For exam-
ple, in SI for SFS by Tibshirani et al. (2016), the authors
needed to consider conditioning not only on selected fea-
tures but also on additional events regarding the history of
the feature selection algorithmic process and the signs of
the features. Such extra-conditioning leads to loss of power
in the inference (Fithian et al., 2014).

In this study, we go beyond polytope-based SI and propose
a novel conditional SI method using the homotopy con-
tinuation approach for SFS. We call the proposed method
homotopy-based SI. In contrast to polytope-based SI for
SFS in Tibshirani et al. (2016), the proposed method is more
powerful and more general. The basic idea of homotopy-
based SI is to use the homotopy continuation approach to
keep track of the hypothesis selection event when the dataset
changes in the direction of the selected test statistic, which
enables efficient identification of the subspace of the sample
space in which the same hypothesis is selected. Further-
more, we show that the proposed homotopy-based SI is
more advantageous for more complicated feature selection
algorithms. As an example, we develop a homotopy-based
conditional SI for forward-backward SFS (FB-SFS) algo-
rithm with AIC-based stopping criteria, and show that it is
not adversely affected by the increased complexity of the
algorithm and that a sufficiently high power is retained.

Related works Traditional statistical inference presumes
that a statistical model and a statistical target for which we
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seek to conduct inference are determined before observing
the dataset. Therefore, if we apply traditional methods to
hypotheses selected after observing the dataset, the infer-
ential results are no longer valid. This problem has been
extensively discussed in the context of feature selection. In
fact, even in commonly used feature selection methods such
as SFS, correct assessment of the statistical reliability of
selected features has long been difficult. Several approaches
have been suggested in the literature toward addressing this
problem (Benjamini & Yekutieli, 2005; Leeb & Potscher,
2005; Leeb et al., 2006; Benjamini et al., 2009; Potscher
et al., 2010; Berk et al., 2013; Lockhart et al., 2014; Taylor
etal., 2014).

In recent years, Lee et al. (2016) proposed a practical con-
ditional SI framework to perform exact (non-asymptotic)
inference for a set of features selected by lasso. In their
work, the authors showed that, for a set of features selected
by Lasso, the selection event can be characterized as a poly-
tope by conditioning on the selected set of features as well
as additional events on their signs. Furthermore, Tibshirani
et al. (2016) showed that polytope-based SI is also applica-
ble to SFS by additionally conditioning on the history and
signs of sequential feature selection. Conditional SI has
been actively studied in the past few years and extended to
various directions (Fithian et al., 2015; Choi et al., 2017;
Tian et al., 2018; Chen & Bien, 2019; Hyun et al., 2018;
Loftus & Taylor, 2014; 2015; Panigrahi et al., 2016; Tibshi-
rani et al., 2016; Yang et al., 2016; Suzumura et al., 2017,
Tanizaki et al., 2020; Duy et al., 2020b; Tsukurimichi et al.,
2021; Das et al., 2021).

In conditional Sls, it is typically preferred to condition on
as little as possible so that the inference can be more pow-
erful (Fithian et al., 2014). Namely, the main limitations
of current polytope-based SI methods are that excessive
conditioning is required to represent the selection event
with a single polytope. In the seminal paper by Lee et al.
(2016), the authors already discussed the problem of over-
conditioning, and explained how extra conditioning on signs
can be omitted by an exhaustive enumeration of all possible
signs and by taking the union over the resulting polyhedra.
However, such an exhaustive enumeration of exponentially
increasing number of sign combinations is feasible only
when the number of selected features is fairly small.

Several other approaches were proposed to circumvent the
drawbacks and restrictions of polytope-based SI. Loftus &
Taylor (2015) extended polytope-based SI such that selec-
tion events characterized by quadratic inequalities can be
handled, but this inherits the same over-conditioning prob-
lem. To improve the power, Tian et al. (2018) proposed
an approach to randomize the algorithm in order to condi-
tion on less. Terada & Shimodaira (2019) proposed to use
bootstrap re-sampling to characterize the selection event

more generally. The disadvantage of these approaches is
that additional randomness is introduced into the algorithm
and/or the inference.

This study is motivated by Liu et al. (2018) and Duy &
Takeuchi (2021). The former studied Lasso SI for full-
model parameters, whereas the latter extended the basic
idea of the former so that it can be also applied to Lasso
SI in more general settings. These two studies go beyond
polytope-based SI for more powerful Lasso SI without con-
ditioning on signs. Because Lasso is formulated as a convex
optimization problem, the selection event for conditional SI
can be characterized based on the optimality conditions of
the convex optimization problem. These two methods rely
on the optimality conditions to characterize the minimum
conditions for the Lasso feature selection event.

In contrast, the SFS algorithm cannot be formulated as an
optimization problem. Therefore, existing conditional SI
methods for SFS are based on conditioning on the history
rather than the output of the SFS algorithm. Namely, ex-
isting SI methods actually consider conditions not only on
which features are selected but also in what order they are
selected. Moreover, when the SFS algorithm is extended
to more complex procedures such as FB-SFS, the over-
conditioning problem has more pronounced negative effects.
Because features can be added and removed in various or-
ders in FB-SFS, if we condition on the history rather than
the output of the algorithm, we will suffer from extensive
over-conditioning on the entire history of feature addition
and removal.

Our contributions Our contributions are as follows:

e We propose a novel conditional SI method for the
SFS algorithm using the homotopy continuation approach
and show that the proposed method overcomes the over-
conditioning problem in existing methods and enables us to
conduct minimally conditioned more powerful conditional
SI on the selected features by the SES algorithm.

e We develop a conditional ST method for the FB-SFS al-
gorithm with AIC-based stopping criteria by using the ho-
motopy continuation approach. Although the conventional
polytope-based SI method is more adversely affected by
the over-conditioning problem when SES is extended to
FB-SFS, we show that our homotopy-based method still
enables us to conduct minimally-conditioned SI and retains
sufficiently high power.

e We demonstrate the validity and power of the proposed
homotopy-based SI methods through numerical experiments
on synthetic and real benchmark datasets.

For reproducibility, our implementation is available at
https://github.com/takeuchi-lab/selective_inference_
stepwise_feature_selection
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Notations For a natural number n, we denote [n] to be
the set {1,...,n}. The n X n identity matrix is denoted by
I,,. For a matrix X and a set of column indices M, X 4
indicates the matrix with the set of columns corresponding
to M.

2. Problem Statement

We consider the forward SFS for a regression problem. Let
n be the number of instances and p be the number of orig-
inal features. We denote the observed dataset as (X, y)
where X € R™*P is the design matrix and y € R" is the
response vector. Following the problem setup from the ex-
isting literature on conditional SI such as Lee et al. (2016)
and Tibshirani et al. (2016), we assume that the observed
response y is a realization of the following random response
vector

Y = (Yi,..,Yn) " ~ N, %), ()

where ¢ € R™ is the unknown mean vector and X € R™*"
is the covariance matrix, which is known or estimable from
independent data. The design matrix X is assumed to be
non-random. For notational simplicity, we assume that each
column vector of X is normalized to have unit length.

Stepwise feature selection We consider the standard for-
ward SFS method as studied in Tibshirani et al. (2016) in
§2 and §3. At each step of the SFS method, the feature that
most improves the fit is newly added. When each feature
has unit length, it is equivalent to the feature which is most
correlated with the residual of the least-square regression
model fitted with the previously selected features. For a
response vector y € R™ and a set of features M C [p], let
7(y, X p) be the residual vector obtained by regressing y
onto X o4 for a set of features M, i.e.,

r(y, Xm) = Px, .y = (I. — Px,)y

where Py, = X (X 1, Xam) 1 X (. Let K be the num-
ber of the selected features by the SFS method'. We denote
the index of the feature selected at step k as ji and the set
of selected features up to step k as My = {j1,...,Jk}
for k € [K] (Note, however, that, if there is no ambiguity,
we simply denote the final set of the selected features as
M (= Mk)). Feature jy, is selected as

jr = argmin Hr(y,XMkflu{j})H;
JEPN\Mp—1

= argmax |sch7°(y, XMy_y)
JEPN\ME_1

; 2

where My (y) := 0 and r(y, My) := y.

"We discuss a situation where the number of features K is
selected by cross-validation in Appendix E. In other parts of the
paper, we assume that K is determined before looking at the data.

Statistical inference In order to quantify the statistical
significance of the relation between the selected features
and the response, we consider a statistical test for each
coefficient of the selected model parameters

B = (X Xm) ' X gy

Note that the j* coefficient is written as S ; = 17 y by
defining

n= X (X Xm) e, 3)

where e; € R is a unit vector, 5" element of which
is 1 and O otherwise. Note that 17 depends on M and j,
but we omit the dependence for notational simplicity. We
consider the following statistical test for each coefficient

Brmy=mn"p

HotﬁM’jZO VS. HliﬁM)j#O, (4)

where Baq ; is the 4t element of the population least

squares 3y = Papp, ie., the projection of p onto the
column space of X . Throughout the paper, we do not
assume that the linear model is correctly specified, i.e., it
is possible that p # X o3 for any 3 € RP. Even when
the linear model is not correctly specified, B, is still a
well-defined best linear approximation.

Conditional Selective Inference Because the target of
the inference is selected by observing the data y, if we
naively apply a traditional statistical test to the problem in
(4) as if the inference target is pre-determined, the result will
be invalid (type-I error cannot be controlled at the desired
significance level) owing to selection bias. To address the
selection bias problem, we consider conditional SI intro-
duced in Lee et al. (2016) and Tibshirani et al. (2016). Let
us write the SFS algorithm as the following function:

A:y— M,

which maps a response vector y € R" to the set of the
selected feature M by the SFS algorithm.

In conditional SI, the inference is conducted based on the fol-
lowing conditional sampling distribution of the test-statistic:

n'Y [{AY) = Ay).q(Y)=a(y)}, 6

where
q(Y) = (I, — en")Y with ¢ = £n(n ' $n) ™!

is the nuisance parameter, which is independent of the test
statistic. The first condition A(Y") = A(y) in (5) indicates
the event that the set of the selected features by the K -step
SFS method with a random response vector Y is M, i.e.,
the same as those selected with the observed response vector



More Powerful and General Selective Inference for Stepwise Feature Selection Using Homotopy Method

y. The second condition q(Y') = ¢g(y) indicates that the
nuisance parameter for a random response vector Y is the
same as that for the observed vector y°.

To conduct the conditional inference for (5), the main task
is to identify the conditional data space

)=A(y),qa(Y)=q(y)}. (6)

Once Y is identified, we can easily compute the pivotal
quantity

Y={Y eR"| A(Y

FZ ,orsam'y) |y €Y, )

where F' rf_sg is the c.d.f. of the truncated Normal distribu-
tion with mean m, variance s2, and truncation region Z.
Later, we will explain how Z is defined in (7). The pivotal
quantity is crucial for calculating p-value or obtaining confi-
dence interval. Based on the pivotal quantity, we can obtain
selective p-value (Fithian et al., 2014) in the form of

pjelective -9 IniIl{Tl'j, 1— Trj}v (8)

where m; = 1 — anTEn(nTy). Furthermore, to obtain

1 — « confidence interval for any « € [0, 1], by inverting the
pivotal quantity in (7), we can find the smallest and largest
values of 17" such that the value of the pivotal quantity
remains in the interval [%,1 — %] (Lee et al., 2016).

Characterization of the conditional data space ) Using
the second condition in (6), the data in ) are restricted to a
line (see Liu et al. (2018) and Fithian et al. (2014)). There-
fore, the set ) can be re-written, using a scalar parameter
z € R, as

Y={yx) eR"|y(z)=a+bz,ze Z} (9
where @ = q(y), b = ¥n(n " Xn)~!, and
Z={ZeR|A@y(2)) =Ay)}. (10)

Here, a, b and Z depend on M and j, but we omit the
subscripts for notational simplicity. Now, let us consider a
random variable Z € R and its observation z € R such that
they respectively satisfy Y = a+bZ and y = a + bz. The
conditional inference in (5) is re-written as the problem of
characterizing the sampling distribution of

Z|Z¢€Z. (11)

Because Z ~ N(n'pu,n'¥n), Z | Z € Z follows a
truncated Normal distribution. Once the truncation region
Z is identified, the pivotal quantity in (7) is obtained as
FUZT”}"TEW(,Z). Thus, the remaining task is reduced to the
characterization of Z.

>The q(Y") corresponds to the component z in the seminal
paper (see Lee et al. (2016), §5, Eq. 5.2, and Theorem 5.2).

Over-conditioning in existing conditional SI methods
Unfortunately, full identification of the truncation region
Z in conditional SI for the SFS algorithm is considered
computationally infeasible. Therefore, in existing condi-
tional SI studies such as Tibshirani et al. (2016), the authors
circumvent the computational difficulty by over condition-
ing. Note that over-conditioning is not harmful for selective
type-I error control, but it leads to the loss of power (Fithian
et al., 2014). In fact, the decrease in the power due to over-
conditioning is not unique problem for SFS in Tibshirani
et al. (2016) but is a common major problem in many exist-
ing conditional Sls (Lee et al., 2016). In the next section,
we propose a method to overcome this difficulty.

3. Proposed Homotopy-based SI for SFS

As we discussed in §2, to conduct conditional SI, the trun-
cation region Z C R in (10) should be identified. To con-
struct Z, our idea is 1) computing A(y(z)) for all z € R
and 2) identifying the set of intervals of z € R on which
A(y(z)) = A(y). However, it seems intractable to obtain
A(y(z)) for infinitely many values of z € R.

To overcome the difficulty, we combine two approaches
called extra-conditioning and homotopy continuation. Our
idea is motivated by the regularization paths of Lasso (Os-
borne et al., 2000; Efron & Tibshirani, 2004), SVM (Hastie
et al., 2004) and other similar methods (Rosset & Zhu, 2007,
Bach et al., 2006; Rosset & Zhu, 2007; Tsuda, 2007; Lee &
Scott, 2007; Takeuchi et al., 2009; Takeuchi & Sugiyama,
2011; Karasuyama & Takeuchi, 2010; Hocking et al., 2011;
Karasuyama et al., 2012; Ogawa et al., 2013; Takeuchi et al.,
2013; Duverle et al., 2013), in which the solution path along
the regularization parameter can be computed by analyz-
ing the KKT optimality conditions of parametrized convex
optimization problems.

Although SFS cannot be formulated as a convex opti-
mization problem, by introducing the notion of extra-
conditioning, we note that a conceptually similar approach
as homotopy continuation can be used to keep track all pos-
sible changes in the selected features when the response
vector y changes along the direction of the test-statistic. A
conceptually similar idea has recently been used for evalu-
ating the reliability of deep learning representations (Duy
et al., 2020a).

3.1. Extra-Conditioning

First, let us consider the history H and signs S of the SFS
algorithm. The history of the SFS algorithm is defined as
H = (M1,M2, e 7MK),

i.e., the sequence of the sets of the selected features in K
steps. The signs of the SFS algorithm are defined as a vector
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S :=(851,8s,...,5kK), k'™ element of which is defined as

Sk = sgn ($;|—kT(y,XMk71))

for k € [K], which indicates the sign of the ji* feature
when it is first entered to the model at step k.

We interpret the function A : y — M as a composite
function A = A; o Ay where

Ay (H,8) —» M, and As : y — (H,S),
i.e., the following relationships hold:

M= A(y) = Ai1(Aa(y)),
M= A((H,S)),
(7‘[73) = -A2(y)

Let us now consider conditional SI not on A(Y) = A(y)
but on A3(Y) = Ax(y). The next lemma indicates that, by
conditioning on the history and the signs (#, S) rather than
the set of the selected features M, the truncation region can
be simply represented as an interval in the line

y(z)=a+bz, zeR

Lemma 1. Consider a response vector y' € ). Let
(H',S") = A2(y’) be the history and the signs obtained by
applying the K-step SFS algorithm to the response vector
y’, and their elements are written as

H =(Mi,... . Mx)and S' = (S1,...,Sk).

Then, the over-conditioned truncation region defined as

2y ) = {z € R | Ax(y(2)) = Aa2(y')} (12)
is an interval
z € max @7 min ) , (13)
ke(K], d(k,j) ke(K], d(k,j)
JEPN\M_q, JEPNM, 4,
d(kyj)>0 d(kyj)<0
where
€k, = (@5 — w]kSL)TP§Mk e
diey) = (@St —2) P, b,

fork € [K],j € [Pl \ Mj_.

The proof is presented in Appendix A.

Note that the condition A2(Y") = A2 (y) is redundant for
our goal of making the inference conditional on A(Y") =
A(y). This over-conditioning is undesirable because it de-
creases the power of conditional inference (Fithian et al.,

Algorithm 1 SFS_conditional_ST
Il’lpllt: X> Yy, Ka [Zmin7 Zmax]
1: M <+ Applying the K -step SFS algorithm to (X, y)

2: for each selected feature j € M do

3:  Compute n <— Equation (3)

4:  Compute a and b +— Equation (9)

5. Z < compute_truncation_region (X, K, a, b,
[Zmin, Zmax]a M)

6: pi-ele“i"e + Equation (8) (and/or selective confi-
dence interval)

7: end for

Output: {pje“’c“"e }jem (and/or selective confidence in-
tervals)

2014), but the original conditional SI method for SFS in
Tibshirani et al. (2016) performs conditional inference un-
der exactly this over-conditioning case because otherwise
the selection event cannot be formulated as a polytope. In
the following subsection, we overcome this computational
difficulty by utilizing the homotopy continuation approach.

3.2. Homotopy Continuation

In order to obtain the optimal truncation region Z in (10),
our idea is to enumerate all the over-conditioned regions in
(12) and to consider their union

2=

y'eV|A(y)=Ay)

ZOC(y/)

by homotopy continuation. To this end, let us consider
all possible pairs of history and signs (H(z),S(z)) =
Az (y(z)) for z € R. Clearly, the number of such pairs
is finite. With a slight abuse of notation, we index each pair
byt =1,2,...,T and denote it such as (H*), S®*)), where
T is the number of the pairs. Lemma 1 indicates that each
pair corresponds to an interval in the line. Without loss of
generality, we assume that the left-most interval corresponds
to t = 1, the second left-most interval corresponds to t = 2,
and so on. Then, using an increasing sequence of real num-
bers z; < 29 < --- < 2zr < zry41, We can write these
intervals as [z1, 2], [22, 23], - - -, [2T, 27+1]. In practice, we
do not have to consider the entire line z € (—o0, 00), but it
suffices to consider a sufficiently wide range. Specifically,
in the experiments in §5, we set zymin = 21 = —(|2| + 10)o
and zmax = 27+1 = (|2] + 10)o where o is the standard
error of the test-statistic. With this choice of the range, the
probability mass outside the range is negligibly small.

Our simple idea is to compute all possible pairs
{(H®,SW)NT | by keeping track of the intervals
[21, 22], [22, 23], - - , 21, 27+1] one by one, and then to
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Algorithm 2 compute_truncation_.region
Il’lpllt: X> K7 a, b7 [Zminy zmaxL M
1: Initialization: t = 1, 2; = Zmin, 2 = 0

2: while z; < z., do

3 y(z+Az) =a+ bz + Az)

4: (HW,S") « Applying K-step SFS to (X, y(z +
Az))

5: 2441 < Equation (13)
6:  if M® = M then

7: Z — ZU |z, 241
8: endif

9: t+t+1

10: end while
Olltpllt: Z = {Z S [Zmin; Zmax] | .A(y(z)) = A(y)}

compute the truncation region Z by collecting the inter-
vals in which the set of the selected features M®) =
AL (H®,S8®)) is the same as the set of the actually se-
lected features from the observed data M = A(y), i.e.,

= U

te[T]] A1 ((HM,S1))=A(y)

[Zt, Zt+1]-

We call 2y, 29, ..., 2741 breakpoints. We start from ap-
plying the SFS algorithm to the response vector y(z;) and
obtain the first pair (H(),S(M)). Next, using Lemma 1
with y' = y(z1), the next breakpoint zo is obtained as
the right end of the interval in (13). Next, the second pair
(H?),5®) is obtained by applying the SFS method to the
response vector y(z2 + Az), where Az is a small value
such that z; + Az < zpyq for all ¢ € [T]. This process
is repeated until the next breakpoint becomes greater than
Zmax- Lhe pseudo-code of the entire method is presented in
Algorithm 1 and the computation of the truncation region
Z is described in Algorithm 2.

4. Forward Backward Stepwise Feature
Selection

In this section, we present a conditional SI method for the
FB-SFS algorithm using the homotopy method. At each step
of the FB-SFS algorithm, a feature is considered for addition
to or subtraction from the current set of the selected features
based on some pre-specified criterion. As an example of
commonly used criterion, we study the AIC-based criterion,
which is used as the default option in well-known stepAIC
package in R.

Under the assumption of Normal linear model ¥ ~
N(XB,%), for a set of the selected features M, the AIC is

written as
AIC ::mgx(y - XmB) =7 (y — XmB) +2|M|
=y Apy +2[M|, (14)

where Ay = X271 = S X (X L2 1 XMm) IX [ 2T
and | M| is the number of the selected features (the irrelevant
constant term is omitted here). The goal of AIC-based FB-
SFS is to find a model with the smallest AIC while adding
and removing features step by step. The algorithm starts
either from the null model (the model with only a constant
term) or the full model (the model with all the p features). At
each step, among all possible choices of adding one feature
to or deleting one feature from the current model, the one
with the smallest AIC is selected. The algorithm terminates
when the AIC is no longer reduced.

With a slight abuse of notations, let us use the following
notations, the same as in §3.

Ay M A - H—> M A y— H,

where M is the set of the selected features and H is the
history of the FB-SFS algorithm written as
H=(My,...,Mg),

where M is the set of the selected features at step & for
k € [K]. Here, the history H contains the information
on feature addition and removal in the FB-SFS algorithm.
Therefore, unlike the forward SFS algorithm in §3, the size
of M, can be increased or decreased depending on whether
a feature is added or removed.

Using these notations, the truncation region Z is similarly
obtained as

{zeR| Ay(2) = A(y)}
= U eR|AyE)=H (15

H|AL(H)=A(y)

Z

The basic idea of the homotopy method is the same as
before; we find a range of 2z € R such that the algorithm has
a certain history ‘H and take the union of those for which the
output M obtained from the history 7 is equal to the actual
selected set of features M = A(y). The following lemma
indicates that a range of z € R in which the algorithm has a
certain history 7 can be analytically obtained.

Lemma 2. Consider a response vectory' € Y. Then, the
over-conditioned truncation region defined as

Z2(y") = {z e R | Aa2(y(2)) = A2(y')} (16)

is characterized by a finite number of quadratic inequalities
of z € R.
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The proof is presented in Appendix A.

Unlike the case of polytope-based SI for forward SFS in
the previous section, the over-conditioned region Z°°(y’)
in Lemma 2 possibly consists of multiple intervals. The
homotopy continuation approach can be similarly used for
computing the union of intervals in (15). Starting from
21 = Zmin, We first compute Z°¢(y’) with y' = y(z1)
using Lemma 2. If Z°°(y’) consists of multiple intervals,
we can consider only the interval containing ¢’ and set
the right end of that interval as the next breakpoint. The
computation of the next breakpoint z; can be written as

2z = max{z € Z°°(y(zi—1 + Az))} + Az, (17)

fort =1,2,...,T, where, if Z°°(y(z;—1 + Az)) consists
of two separated intervals, then the maximum operator in
(17) shall take the maximum in the interval containing z;_ 1 .

5. Experiment

We present the experimental results of forward SFS in §3
and §4 in 5.1 and 5.2, respectively. The details of the exper-
imental setups are described in Appendix B. More experi-
mental results on the computational and robustness aspects
of the proposed method are provided in Appendices C and D,
respectively. In all the experiments, we set the significance
level o = 0.05.

5.1. Forward SFS

We compared the following five methods:

* Homotopy: conditioning on the selected features M
(minimal conditioning);

* Homotopy-H: additionally conditioning on the his-
tory H;

* Homotopy-S: additionally conditioning on the signs
S;

* Polytope (Tibshirani et al., 2016): additionally con-
ditioning on the history H and signs S;

» DS: split the data and use one for feature selection and
the other for inference.

Synthetic data experiments We examined the false pos-
itive rates (FPRs), true positive rates (TPRs) and confi-
dence interval (CI) lengths. We generated the dataset
{(@i, i) Yiem) by i ~ N(0,1,) and y; = x| B + &; with
g; ~ N(0,1). We setn € {50,100,150},p =5, K =3
for experiments on FPRs and TPRs. The coefficients 3 was
respectively set as [0,0,0,0,0] " and [0.25,0.25,0,0,0] "
for FPR and TPR experiments. We set n = 100, p = 10,
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Figure 1. Results of forward SFS on synthetic data.

K =9and 8 = [0.25,0.25,0.25,0.25,0.25,0,0,0,0,0] "
for experiments on ClIs.

The results of FPRs, TPRs and CIs are shown in Fig. 1(a),
(b) and (c), respectively. The FPRs and TPRs were esti-
mated by 100 trials, and the plots in Fig. 1(a) and (b) are the
averages when the 100 trials were repeated 20 times, while
the plots in Fig. 1(c) are the results of 100 trials. In all five
methods, the FPRs are properly controlled under the signifi-
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cance level o. Regarding the TPR comparison, it is obvious
that Homot opy method has the highest power because it
is minimally conditioned. Note that the additional condi-
tioning on the history H and/or the signs S significantly
decreases the power. The results of the CIs are consistent
with the results of TPRs.

Real data experiments We compared the pro-
posed method (Homotopy) and conventional method
(Polytope) on three real datasets®. From each of the
original dataset, we randomly generated sub-sampled
datasets with sizes 25, 50 and 100. We computed the
lengths of CIs for each sub-sampled dataset by applying
the proposed and the conventional method. Fig. 2 shows
the results from 10000 trials. For all subsample sizes and
datasets, the proposed methods provides shorter lengths of
ClIs than the conventional method.

5.2. Forward-Backward (FB)-SFS

We compared the following two methods:

e Homotopy: conditioning on the selected features M
(minimal conditioning);

* Quadratic: additionally conditioning on the history
‘H (implemented by using quadratic inequality-based
conditional SI in (Loftus & Taylor, 2015)).

Synthetic data experiments We examined the FPRs,
TPRs and CI lengths by generating synthetic datasets in
the same way as above. We set n € {50,100,150}
p € {10, 20, 50} for experiments on FPRs and TPRs. The
coefficients 3 were zero for the case of FPR, whereas the
first half of the coefficients were either 0.01,0.25,0.5, 1
and the second half were zero for the case of TPR. We set
n = 100, p = 10, and each element of 3 was randomly set
from N(0, 1) for experiments on ClIs.

The results of FPRs, TPRs and CIs are shown in Fig. 3(a),
(b) and (c), respectively. The FPRs and TPRs were estimated
by 100 trials, and the plots in Fig. 3 (a) and (b) are the
averages when the 100 trials were repeated 20 times for FPR
and 10 times for TPR, whereas the plots in Fig. 3(c) are the
results of 100 trials. In both methods, the FPRs are properly
controlled under the significance level a. Regarding the
TPR comparison, it is obvious that Homot opy method has
the higher power than Quadrat ic because it is minimally
conditioned. The results of the CIs are consistent with the
results of TPRs.

3We used Housing (Dataset 1), Abalone (Dataset 2), and Con-
crete Compressive Strength (Dataset 3) datasets in UCI machine
learning repository.
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Figure 2. Results on three real data experiments for forward SFS.

Real data experiments We compared the pro-
posed method (Homotopy) and conventional method
(Quadratic) on the same three real datasets. From each
of the original dataset, we randomly generated sub-sampled
datasets with sizes 25, 50 and 100. We computed the
lengths of CIs for each sub-sampled datasets by applying
the proposed and the conventional methods. Fig. 4 shows
the results from 10000 trials. For all subsample sizes and
datasets, the proposed methods provides shorter lengths of
CIs than the conventional method.
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Figure 3. Results of FB-SFS on synthetic data.

6. Conclusion

In this paper, we proposed a more powerful and general
conditional SI method for SFS algorithm. We resolved the
over-conditioning problem in existing approaches by intro-
ducing the homotopy continuation approach. The experi-
mental results indicated that the proposed homotopy-based
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Figure 4. Results on three real data experiments for FB-SFS.

approach is more powerful and general.
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