Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Arabidopsis bZIP19 and bZIP23 act as zinc sensors to control plant zinc status

Abstract

Zinc (Zn) is an essential micronutrient for plants and animals owing to its structural and catalytic roles in many proteins1. Zn deficiency affects around 2 billion people, mainly those who live on plant-based diets relying on crops from Zn-deficient soils2,3. Plants maintain adequate Zn levels through tightly regulated Zn homeostasis mechanisms involving Zn uptake, distribution and storage4, but evidence of how they sense Zn status is lacking. Here, we use in vitro and in planta approaches to show that the Arabidopsis thaliana F-group bZIP transcription factors bZIP19 and bZIP23, which are the central regulators of the Zn deficiency response, function as Zn sensors by binding Zn2+ ions to a Zn-sensor motif. Deletions or modifications of this Zn-sensor motif disrupt Zn binding, leading to a constitutive transcriptional Zn deficiency response, which causes a significant increase in plant and seed Zn accumulation. As the Zn-sensor motif is highly conserved in F-group bZIP proteins across land plants, the identification of this plant Zn sensor will promote new strategies to improve the Zn nutritional quality of plant-derived food and feed, and contribute to tackling the global Zn-deficiency health problem.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: In vitro Zn-protein binding assay.
Fig. 2: In planta analysis of the ability of bZIP19 Cys/His-rich Zn-sensor-motif variants to activate transcription of GUS from the ZIP4 promoter in a bzip19/23-pZIP4::GUS background.
Fig. 3: Effects on gene expression and Zn concentration after expression of the bZIP19(del1 del2) variant in the bzip19/23 and bzip19/23-pZIP4::GUS backgrounds.
Fig. 4: Schematic of cellular Zn sensing in Arabidopsis.

Similar content being viewed by others

Data availability

Accession numbers of genes mentioned in this study are as follows: bZIP19, AT4G35040; bZIP23, AT2G16770; ZIP4, AT1G10970; ZIP5, AT1G05300; NAS2, AT5G56080; ACT2, AT3G18780. All data supporting the findings of this study are available in the main text, Extended Data Figs. 16 or in the Supplementary Information. Additional data related to this study are available from the corresponding author on request. All biological materials used in this study are available from the corresponding author on reasonable request. Source data are provided with this paper.

References

  1. Maret, W. & Li, Y. Coordination dynamics of zinc in proteins. Chem. Rev. 109, 4682–4707 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Welch, R. M. & Graham, R. D. Breeding for micronutrients in staple food crops from a human nutrition perspective. J. Exp. Bot. 55, 353–364 (2004).

    Article  CAS  PubMed  Google Scholar 

  3. Wessells, K. R. & Brown, K. H. Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS ONE 7, e50568 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Clemens, S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212, 475–486 (2001).

    Article  CAS  PubMed  Google Scholar 

  5. Andreini, C., Banci, L., Bertini, I. & Rosato, A. Zinc through the three domains of life. J. Proteome Res. 5, 3173–3178 (2006).

    Article  CAS  PubMed  Google Scholar 

  6. Choi, S. & Bird, A. J. Zinc’ing sensibly: controlling zinc homeostasis at the transcriptional level. Metallomics 6, 1198–1215 (2014).

  7. Colvin, R. A., Holmes, W. R., Fontaine, C. P. & Maret, W. Cytosolic zinc buffering and muffling: their role in intracellular zinc homeostasis. Metallomics 2, 297–356 (2010).

    Article  Google Scholar 

  8. Patzer, S. I. & Hantke, K. The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol. Microbiol. 28, 1199–1210 (1998).

    Article  CAS  PubMed  Google Scholar 

  9. Andrews, G. K. Cellular zinc sensors: MTF-1 regulation of gene expression. Biometals 14, 223–237 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Eide, D. J. Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J. Biol. Chem. 284, 18565–18569 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Assunção, A. G. L. et al. Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc. Natl Acad. Sci. USA 107, 10296–10301 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Vinson, C. R., Sigler, P. B. & McKnight, S. L. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science 246, 911–916 (1989).

    Article  CAS  PubMed  Google Scholar 

  13. Deppmann, C. D., Alvania, R. S. & Taparowsky, E. J. Cross-species annotation of basic leucine zipper factor interactions: insight into the evolution of closed interaction networks. Mol. Biol. Evol. 23, 1480–1492 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Castro, P. H. et al. Phylogenetic analysis of F-bZIP transcription factors indicates conservation of the zinc deficiency response across land plants. Sci. Rep. 7, 3806 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Guerinot, M. & Lou The ZIP family of metal transporters. Biochim. Biophys. Acta 1465, 190–198 (2000).

    Article  CAS  PubMed  Google Scholar 

  16. Clemens, S., Deinlein, U., Ahmadi, H., Höreth, S. & Uraguchi, S. Nicotianamine is a major player in plant Zn homeostasis. BioMetals 26, 623–632 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Inaba, S. et al. Identification of putative target genes of bZIP19, a transcription factor essential for Arabidopsis adaptation to Zn deficiency in roots. Plant J. 84, 323–334 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Lilay, G. H., Castro, P. H., Campilho, A. & Assunção, A. G. L. The Arabidopsis bZIP19 and bZIP23 activity requires zinc deficiency—insight on regulation from complementation lines. Front. Plant Sci. 9, 1955 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Assunção, A. G. L. et al. Model of how plants sense zinc deficiency. Metallomics 5, 1110–1116 (2013).

    Article  PubMed  Google Scholar 

  20. Persson, D. P., Hansen, T. H., Laursen, K. H., Schjoerring, J. K. & Husted, S. Simultaneous iron, zinc, sulfur and phosphorus speciation analysis of barley grain tissues using SEC-ICP-MS and IP-ICP-MS. Metallomics 1, 418–426 (2009).

    Article  CAS  PubMed  Google Scholar 

  21. Azevedo, H. et al. Transcriptomic profiling of Arabidopsis gene expression in response to varying micronutrient zinc supply. Genom. Data 7, 256–258 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Maret, W. Zinc Biochemistry: from a single zinc enzyme to a key element of life. Adv. Nutr. 4, 82–91 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Krężel, A. & Maret, W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 611, 3–19 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Clemens, S. Metal ligands in micronutrient acquisition and homeostasis. Plant Cell Environ. 42, 2902–2912 (2019).

    Article  CAS  PubMed  Google Scholar 

  25. Kashiv, Y. et al. Imaging trace element distributions in single organelles and subcellular features. Sci. Rep. 6, 21437 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao, H. et al. Regulation of zinc homeostasis in yeast by binding of the ZAP1 transcriptional activator to zinc-responsive promoter elements. J. Biol. Chem. 273, 28713–28720 (1998).

    Article  CAS  PubMed  Google Scholar 

  27. Lyons, T. J. et al. Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast. Proc. Natl Acad. Sci. USA 97, 7957–7962 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bird, A. J. et al. Zinc fingers can act as Zn2+ sensors to regulate transcriptional activation domain function. EMBO J. 22, 5137–5146 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Frey, A. G. et al. Zinc-regulated DNA binding of the yeast Zap1 zinc-responsive activator. PLoS ONE 6, e22535 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kobayashi, T. Understanding the complexity of iron sensing and signaling cascades in plants. Plant Cell Physiol. 60, 1440–1446 (2019).

    Article  CAS  PubMed  Google Scholar 

  31. Kim, S. A., LaCroix, I. S., Gerber, S. A. & Guerinot, M. Lou. The iron deficiency response in Arabidopsis thaliana requires the phosphorylated transcription factor URI. Proc. Natl Acad. Sci. USA 116, 24933–24942 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Castro, P. H., Lilay, G. H. & Assuncao, A. G. L. in Plant Micronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants (eds Hossain M. A. et al.) Ch. 1, 1–10 (Academic Press Books, Elsevier, 2018).

  33. Dubeaux, G., Neveu, J., Zelazny, E. & Vert, G. Metal sensing by the IRT1 transporter-receptor orchestrates its own degradation and plant metal nutrition. Mol. Cell 69, 953–964 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Cakmak, I. & Kutman, U. B. Agronomic biofortification of cereals with zinc: a review. Eur. J. Soil Sci. 69, 172–180 (2018).

    Article  Google Scholar 

  35. White, P. J. & Broadley, M. R. Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 182, 49–84 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Nazri, A. Z., Griffin, J. H. C., Peaston, K. A., Alexander-Webber, D. G. A. & Williams, L. E. F-group bZIPs in barley—a role in Zn deficiency. Plant. Cell Environ. 40, 2754–2770 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Evens, N. P., Buchner, P., Williams, L. E. & Hawkesford, M. J. The role of ZIP transporters and group F bZIP transcription factors in the Zn-deficiency response of wheat (Triticum aestivum). Plant J. 92, 291–304 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lilay, G. H. et al. Rice F-bZIP transcription factors regulate the zinc deficiency response. J. Exp. Bot. 71, 3664–3677 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Shan, Q. et al. Targeted genome modification of crop plants using a CRISPR–Cas system. Nat. Biotechnol. 31, 686–688 (2013).

    Article  CAS  PubMed  Google Scholar 

  40. Earley, K. W. et al. Gateway-compatible vectors for plant functional genomics and proteomics. Plant J. 45, 616–629 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Jefferson, R. A., Kavanagh, T. A. & Bevan, M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    CAS  PubMed  Google Scholar 

  43. Olsen, L. I. et al. Mother-plant-mediated pumping of zinc into the developing seed. Nat. Plants 2, 16036 (2016).

Download references

Acknowledgements

This work was supported by the Independent Research Fund Denmark, DFF-YDUN-program (4093–00245B); Portuguese Foundation for Science and Technology, FCT-IF program (IF/01641/2014), FCT-MCTES (PTDC/BAA-AGR/31122/2017; POCI-01-0145-FEDER- 031122); Novo Nordisk Foundation, Biotechnology-based Synthesis and Production Research program (NNF18OC0034598; to G.H.L., P.H.C., F.L. and A.G.L.A.); DFF-FTP-program (50544600-1126521001-112652; to D.P.P.) and the Netherlands Genome Initiative (40-41009-98-11084; to R.A. and M.G.M.A.). Element analysis was performed at CHEMI Center, and imaging data were collected at the CAB Center at PLEN, University of Copenhagen.

Author information

Authors and Affiliations

Authors

Contributions

G.H.L., D.P.P., P.H.C., F.L., R.D.A. and A.G.L.A. designed and performed experiments. G.H.L. and A.G.L.A. analysed and interpreted data. G.H.L., M.G.M.A. and A.G.L.A. wrote the manuscript. All of the authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Ana G. L. Assunção.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Plants thanks Marc Hanikenne and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 SEC-ICP-MS chromatogram of MBP incubated with 67Zn stable isotope.

SEC-ICP-MS chromatogram showing a sample of maltose binding protein (MBP) incubated with 67Zn stable isotope. The MBP eluted after ~590 s and was detected both a, by UV and b, by a weak 48SO signal. The 48SO signal is weak due to the low-amount of S-containing amino acids in the MBP. c, There is no co-elution of 67Zn with the MBP at this retention time, showing that there is no Zn-binding to MBP. Free 67Zn eluted after ~680 s.

Extended Data Fig. 2 Shoot ionome analysis of the motif deletion mutant lines (bZIP19 del1 del2).

Shoot ionome analysis of the motif deletion mutant lines (bZIP19 del1 del2). Plants (aged 6 weeks) of WT (Col), bzip19/23 (-), bzip19/23-bZIP19, bzip19/23-bZIP19 del1 del2 and bzip19/23-pZIP4::GUS-bZIP19 del1 del2 lines grown in hydroponics with control nutrient solution. a, Fe b, Cu c, Mn and d, P concentration, and e, dry weight (DW), of shoot tissue. # represents independently transformed T3 homozygous lines. Bars represent element concentration or DW of shoots as mean ± s.e.m. (n = 4 or n = 5). Different letters indicate significant differences (p < 0.05), determined using one-way analysis of variance followed by Tukey post-hoc test.

Source data

Extended Data Fig. 3 Seed ionome analysis of the motif deletion mutant lines (bZIP19 del1 del2).

Seed ionome analysis of the motif deletion mutant lines (bZIP19 del1 del2). Seeds from soil-grown plants of WT (Col), bzip19/23 (-), bzip19/23-bZIP19, bzip19/23-bZIP19 del1 del2 and bzip19/23-pZIP4::GUS-bZIP19 del1 del2 lines were analyzed. a, Fe b, Cu c, Mn and d, P concentration in seeds. # represents independently transformed T3 homozygous lines. Bars represent element concentration in seeds as mean ± s.e.m. (n = 4–7). Different letters indicate significant differences (p < 0.05), determined using one-way analysis of variance followed by Tukey post-hoc test.

Source data

Extended Data Fig. 4 Histochemical GUS staining analysis under different micronutrient deficiencies.

Histochemical GUS staining analysis under different micronutrient deficiencies. a, Phenotypic analysis and b, histochemical GUS staining of seedlings (aged 12 d) of pZIP4::GUS and bzip19/23-pZIP4::GUS lines grown on ½MS medium with control or under different micronutrient deficiencies; that is, -Zn, -Fe, -Cu and -Mn. Four to six plates (a), and 3–5 seedlings (b) per treatment and genotype were analyzed.

Extended Data Fig. 5 Deletion mutant lines grown with Zn deficient (-Zn) or sufficient (control) media.

Deletion mutant lines grown with Zn-deficient (-Zn) or -sufficient (control) media. a, Seedlings (aged 14 d) of Arabidopsis WT (Col), bzip19/23 double mutant (-), bzip19/23-bZIP19 and bzip19/23-bZIP19 del1 del2 lines, grown with control or -Zn ½MS medium. b, Plants (aged 6 weeks) of WT (Col), bzip19/23 (-), bzip19/23-bZIP19, bzip19/23-bZIP19 del1 del2 and bzip19/23-pZIP4::GUS-bZIP19 del1 del2 lines grown in hydroponics with control nutrient solution. # represents independently transformed T3 homozygous lines.

Extended Data Fig. 6 Protein gel electrophoresis of purified bZIP19 and bZIP19 del1 del2 proteins.

Protein gel electrophoresis (SDS-PAGE) of purified MBP-bZIP19 and MBP-bZIP19 del1 del2 proteins stained with Coomassie Blue. Forty µg of each purified protein was loaded. The purified proteins show the expected molecular weight (arrow) ca. 68 KDa (28 KDa from bZIP19 + 40 KDa from MBP). The analysis was performed twice with two independent protein extractions. Molecular weight markers (MW) are displayed.

Source data

Supplementary information

Source data

Source Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 2

Statistical source data.

Source Data Extended Data Fig. 3

Statistical source data.

Source Data Extended Data Fig. 6

Unprocessed gel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lilay, G.H., Persson, D.P., Castro, P.H. et al. Arabidopsis bZIP19 and bZIP23 act as zinc sensors to control plant zinc status. Nat. Plants 7, 137–143 (2021). https://doi.org/10.1038/s41477-021-00856-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00856-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing